线性代数—— 常量、变量、向量、矩阵的基本概念

本文解析了数学中的几个基本概念——常量、变量、向量及矩阵的区别与联系,以直观的方式帮助读者理解这些概念的维度差异及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以前读书的那阵,对这几个概念总是分的不太清,比如为什么常数加了一个方向就是向量,行列式的竖线为什么变成了大括号就成了矩阵,为什么矩阵的一些计算就不能用到行列式里,为什么老师说向量的集合又是矩阵······

这篇文章本着对过去的数学知识的总结,我会试图用我能表达清楚的语言解释我对这几个概念的理解。

常量、变量、向量、矩阵

常量应该是比较容易理解的一个数学概念。从小我们对于年龄、大小、高低、远近等概念有比较直观的感受,并且知道这些概念会至少在一段时间内不会变化,比如说妈妈买了十个苹果,无论放在茶几上,还是放在厨房里,不对苹果做任何处理时,苹果的总数是不变的,苹果的大小,重量也是不变的,这也就是我们对于常量最直观的感受。

稍微读了小学以后,开始懂得了用来描述运动的物体,比如跑步时,有了一种用 m / s m/s m/s 的复合单位表示某物体在一段时间内的均匀运动状态。由于生活中有活动的物体、静止的物体,所以我们也能理解变量这个用于描述变化、运动的一种抽象概念。

为什么说是抽象概念,比如 10 m / s 10m/s 10m/s 30 m / s 30m/s 30m/s 50 m / s 50m/s 50m/s 它描述的有多快,你只能通过换算,然后把得到的数据跟现实中的物体在通常情况下的运动状态进行联想,于是,“啊,它跟车子一样快”的感觉。

所以变量是一种比较抽象的概念,而与自身固有属性的常量相比,变量所表示的含义本身就突出了一个 “变” 字,表示因某些行为,而导致属性的变动。

而当我们的数学、物理老师引入了向量这个概念后,这个时候我们很多人就会开始弄糊涂。从我自身的经验感受来说,向量是一种更高维度的描述,因此它本身除了可以描述常量外,还可以描述变量,以及自身特有的方向属性。

如果说,常量是一维,那么变量就是二维,而向量就是三维。一维空间中,能描述的只有点,二维空间中可以描述点、线、面,而三维空间中不仅点线面,也能描述体这种概念。

而矩阵,则是更高维的存在,它不是四维,而是更高维的存在,可以描述n维。所以,这里我首先解释一下为什么在很多计算中,我们可以直接拿向量的很多计算方法,用于常量、变量的计算;同理,为什么我们也可以直接把常量、变量、向量列入到矩阵中,利用矩阵的各种计算方法去计算这些值。

成年后,我们学习很多新知识都会遵循从总体到局部,或者从上层到底层的学习思路,去梳理我们的知识体系。但如果给小孩子第一天数学课就介绍矩阵,然后从矩阵到向量,再到变量和常量,小朋友估计刚上学第一天就会被劝退,然后怀疑自己真的不是读书的料。

所以,我们在从低级向高级攀爬的过程中,由于带着低级的思考概念,所以出现了一维生物看高维生物,任然觉得它是一个点,看似熟悉,却又特别奇妙,而它还左右横跳。

在这里插入图片描述
稍微总结一下,

维度:

  • 矩阵(n维度)
  • 向量(3维度:大小、方向)
  • 常量与变量(1维度,常量变化了,就是变量;变量维持不变后,就是常量)

所以,低维度向高纬度扩展或者映射,不存在着信息的丢失,而高纬度向低维度映射的时候,会存在信息的丢失。

举个例子来说,在笛卡尔空间系中,XY平面上如果画一个正方形,想把它拓展到三维空间中成为一个正方体,通常只需要增加一个轴Z后,并另这个新的正方体深度信息为0即可。但是如果让一个正方体投影到一个平面后,其体积信息会丢失掉。就是这样一个道理。

在这里插入图片描述

那么如何去定义这些名词,常量、变量、向量、矩阵,它们所属分类呢,说实话,我不知道严谨的数学是怎么划分的,而我自己比较喜欢把这些定义为 “量”

如果把数学比作炒菜,这些量就类似于做菜的原料,例如香料、酱油、油、肉这些;而函数则属于加工这些原料的烹饪手法。

你会发现,为什么我到现在都没提行列式呢,因为行列式显然属于第二类,也就是函数的范畴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值