【AI之路】cmd命令行通过Huggingface镜像站快速下载模型文件的方法


前言

Hugging Face Hub 是分享机器学习模型、演示、数据集和指标的首选之地。 huggingface_hub 库可以轻松下载Huggingface上有用的模型和数据集元数据。
但大模型文件通常较大,国内下载太慢,那有没有高效便捷的方法?

这个当然必须有!


一、huggingface-cli 是什么?

huggingface-cli 是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。

首先安装依赖

pip install -U huggingface_hub

二、使用步骤

1. 设置环境变量加个速

hf-mirror.com是 huggingface.co镜像,国内下不下来的模型,通过这个就可以轻松下载。先使用如下命令给Windows临时设置一下环境变量,cmd窗口直接运行如下命令:

set HF_ENDPOINT=https://hf-mirror.com

运行以上命令后,即从镜像网站下载,速度可以提升好几个档位。

2. 下载示例

这里以下载Index-TTS 的模型文件为例
在这里插入图片描述
同时下载多个文件,具体命令如下:

huggingface-cli download IndexTeam/Index-TTS bigvgan_discriminator.pth bigvgan_generator.pth bpe.model dvae.pth gpt.pth unigram_12000.vocab --local-dir checkpoints

参数示意:
--local-dir checkpoints 指定下载文件保存的本地目录,这里指定为名为 checkpoints 的文件夹。
--resume-download 选项允许如果下载中断了能够继续下载。不过使用了镜像库,很快就下完了,这个参数就不用加了。

3. 完整运行结果

(base) C:\Users\Administrator>set HF_ENDPOINT=https://hf-mirror.com

(base) C:\Users\Administrator>huggingface-cli download IndexTeam/Index-TTS bigvgan_discriminator.pth bigvgan_generator.pth bpe.model dvae.pth gpt.pth unigram_12000.vocab --local-dir checkpoints
Fetching 6 files:   0%|                                                                          | 0/6 [00:00<?, ?it/s]Downloading 'gpt.pth' to 'checkpoints\.cache\huggingface\download\_7f-xidG2lZwkbGRwdGaUEGM9-w=.7797ed691d9c0295fd30af153d9ff04501e353a4c67c3f898e4b0840a5ef10dd.incomplete'
Downloading 'bpe.model' to 'checkpoints\.cache\huggingface\download\Gxtyhw1DNb_863rgFQ-g37D7LQI=.cf30028855ff4a89f6663325c88b44a69f74f97990dd410a4b35414c4db31779.incomplete'
Downloading 'bigvgan_discriminator.pth' to 'checkpoints\.cache\huggingface\download\rP61RaCCq8JUX_UrFOklpHIyM0A=.8a11c977d56c2500c7978affd08678da7a217af124356d88010fa2abcbf51984.incomplete'
Downloading 'unigram_12000.vocab' to 'checkpoints\.cache\huggingface\download\DyI2HlpVtENU6daLhCfFZFW3_ss=.337ffb4197e69c3d7aa57efe2022bbde577b951d.incomplete'
Downloading 'dvae.pth' to 'checkpoints\.cache\huggingface\download\Eo-uOl65TcDqOo9qbdw9EufkiwQ=.c112404dfe25d8d88084b507b0637037a419b4a5a0d9160516d9398a8f2b52c8.incomplete'
Downloading 'bigvgan_generator.pth' to 'checkpoints\.cache\huggingface\download\T7MAeDN3QnT7K91CJaMdYrAx26o=.9ec77084929fad053355669c8b5986e32542f13afeff78ad93389a8f06ce62b0.incomplete'
unigram_12000.vocab: 94.7kB [00:00, 429kB/s]
Download complete. Moving file to checkpoints\unigram_12000.vocab
bpe.model: 100%|█████████████████████████████████████████████████████████████████████| 476k/476k [00:00<00:00, 706kB/s]
Download complete. Moving file to checkpoints\bpe.model██████████████████████████████| 476k/476k [00:00<00:00, 717kB/s]
dvae.pth: 100%|█████████████████████████████████████████████████████████████████████| 243M/243M [00:22<00:00, 10.6MB/s]
Download complete. Moving file to checkpoints\dvae.pth                                      | 0.00/243M [00:00<?, ?B/s]
bigvgan_generator.pth: 100%|████████████████████████████████████████████████████████| 525M/525M [00:54<00:00, 9.59MB/s]
Download complete. Moving file to checkpoints\bigvgan_generator.pth█████████████████| 243M/243M [00:22<00:00, 14.2MB/s]
gpt.pth: 100%|██████████████████████████████████████████████████████████████████████| 697M/697M [01:28<00:00, 7.88MB/s]
Download complete. Moving file to checkpoints\gpt.pth                              | 73.4M/525M [00:21<02:16, 3.31MB/s]
bigvgan_discriminator.pth: 100%|██████████████████████████████████████████████████| 1.63G/1.63G [01:52<00:00, 14.5MB/s]
Download complete. Moving file to checkpoints\bigvgan_discriminator.pth████████████▉| 524M/525M [00:54<00:00, 14.6MB/s]
Fetching 6 files: 100%|██████████████████████████████████████████████████████████████████| 6/6 [01:53<00:00, 18.91s/it]
C:\Users\Administrator\checkpoints

(base) C:\Users\Administrator>cd checkpoints

(base) C:\Users\Administrator\checkpoints>dir
 驱动器 C 中的卷没有标签。
 卷的序列号是 XXXX-XXXX

 C:\Users\Administrator\checkpoints 的目录

2025/04/22  16:03    <DIR>          .
2025/04/22  16:03    <DIR>          ..
2025/04/22  16:01    <DIR>          .cache
2025/04/22  16:03     1,629,487,449 bigvgan_discriminator.pth
2025/04/22  16:02       525,166,944 bigvgan_generator.pth
2025/04/22  16:01           476,049 bpe.model
2025/04/22  16:01       243,316,270 dvae.pth
2025/04/22  16:02       696,529,044 gpt.pth
2025/04/22  16:01            94,747 unigram_12000.vocab
               6 个文件  3,095,070,503 字节
               3 个目录 192,899,473,408 可用字节

(base) C:\Users\Administrator\checkpoints>

总结

看到了吗?只是添加一个参数,下载大模型就搞定了。

当然也可以使用python程序来下载。具体见前期博文:
【AI之路】使用huggingface_hub通过huggingface镜像站hf-mirror.com下载大模型(附代码,实现大模型自由)https://blog.csdn.net/popboy29/article/details/135512259

### 如何将 DeepSeek32B 模型部署到云平台 #### 部署至 AWS 的最佳实践 为了在 Amazon Web Services (AWS) 上成功部署 DeepSeek32B 模型,建议采用 SageMaker 这一托管服务平台。SageMaker 提供了端到端的机器学习工作流支持,简化了从训练到推理的过程。 1. **准备模型** 将预训练好的 DeepSeek32B 模型转换成适用于 SageMaker 推理的形式。这通常涉及到保存 TensorFlow 或 PyTorch 格式的权重文件以及配置入口脚本以定义加载和预测逻辑。 2. **创建容器镜像** 使用 Docker 构建自定义推理解析器镜像,该镜像应包含必要的依赖项、库和支持多版本 Python API 的 SDK 客户端[^1]。 ```dockerfile FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-inference:1.9.1-transformers4.11.3-cpu COPY model /opt/ml/model/ CMD ["transformers_neuronx_runtime"] ``` 3. **上传资源** 把构建完成后的 Docker 映像推送至 ECR(Elastic Container Registry),并将模型参数存入 S3 存储桶内以便后续调用。 4. **启动实例并部署** 利用 Boto3 创建一个新的 EndpointConfig 并关联先前设定的 ModelPackageGroup 名字;最后一步则是激活 endpoint 来使服务上线。 ```python import boto3 sm_client = boto3.client('sagemaker') response = sm_client.create_endpoint_config( EndpointConfigName='DeepSeek32B-Inference', ProductionVariants=[{ 'VariantName': 'AllTraffic', 'ModelName': '<your-model-name>', 'InitialInstanceCount': 1, 'InstanceType': 'ml.m5.large' }] ) endpoint_response = sm_client.create_endpoint(EndpointName="DeepSeek32B", EndpointConfigName=response['EndpointConfigArn']) print(endpoint_response) ``` --- #### 在 Azure 中实现高效部署方案 针对 Microsoft Azure 用户而言,Azure Machine Learning Studio 是理想的解决方案之一。它不仅提供了直观易用的操作界面,还允许用户快速搭建起基于 GPU 加速的高性能计算集群来进行大规模分布式训练任务。 1. **注册 ML 工作区** 登录门户后新建一个 workspace,在这里可以集中管理实验项目、数据集及其他资产。 2. **导入现有模型** 导入已有的 DeepSeek32B checkpoint 文件夹作为基础素材,并指定相应的框架类型如 Hugging Face Transformers 等。 3. **编写评分脚本** 编写用于执行在线预测请求处理流程的 scoring script.py 文档,确保能够正确解析输入 JSON 数据结构并返回预期的结果格式。 4. **发布 RESTful API** 经过测试验证无误之后即可正式对外公布 web service 地址链接给其他应用程序调用了。 ```yaml # azuredeploy.yaml snippet for deploying the model as a webservice. resources: - type: microsoft.machinelearning/services apiVersion: "2020-09-01-preview" name: "[parameters('aksServiceName')]" location: "[resourceGroup().location]" sku: tier: Standard name: Basic properties: description: "Deploying DeepSeek32B on AKS cluster." tags: {} computeType: AksCompute ... ``` --- #### GCP 方面的具体操作指南 Google Cloud Platform (GCP) 凭借其卓越的大规模数据处理能力和丰富的 AI/ML 生态圈同样是一个极佳的选择。Vertex AI 是谷歌最新推出的统一化开发套件,专为满足企业级应用场景而设计优化过的全栈式AI产品线。 1. **设置 Vertex AI Workbench** 开启新的 Notebook 实例来充当交互式编程环境,方便调试代码片段的同时也利于团队协作交流心得经验分享成果展示等用途。 2. **迁移模型架构** 如果原始模型是在本地环境中训练得到的话,则需先将其导出为 SavedModel.pb 形式再上传至 Google Storage Bucket 下方能被远程访问利用起来。 3. **定制 serving function** 设计好 HTTP 请求响应机制后封装进 custom prediction routine 当中去,从而实现在接收到外部传来的 payload 后即刻触发内部算法运算得出结论反馈回去整个闭环过程自动化程度极高效率显著提升。 4. **公开线上接口** 最终通过 gcloud CLI 命令行工具一键提交 job specification 至 Managed Notebooks Service 执行完毕后便可在浏览器里查看实时日志监控状态变化情况直至稳定运行为止。 ```bash gcloud ai-platform models create $MODEL_NAME \ --regions=us-central1 gcloud beta ai endpoints create \ --display-name=$ENDPOINT_DISPLAY_NAME gcloud beta ai endpoints deploy-model $DEPLOYED_MODEL_ID \ --model=$MODEL_NAME \ --machine-type=n1-standard-4 \ --min-replica-count=1 \ --max-replica-count=2 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT里的交易员

分享是一种快乐,打赏是一种肯定

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值