BZOJ 3771 Triple 母函数+FFT

BZOJ 同时被 3 个专栏收录
667 篇文章 1 订阅
16 篇文章 0 订阅

题目大意:给定n个物品,可以用一个/两个/三个不同的物品凑出不同的价值,求每种价值有多少种拼凑方案(顺序不同算一种)

首先搞出这n个物品的母函数a

将a的每项的平方求和得到多项式b

将a的每项的立方求和得到多项式c

那么如果不考虑顺序和重复 那么方案数就是a+b+c

现在考虑顺序和重复后

三个物品的方案数为(a^3-3*a*b+2*c)/6

两个物品的方案数为(a^2-b)/2

一个物品的方案数为a

故最终答案为(a^3-3*a*b+2*c)/6+(a^2-b)/2+a

用FFT搞一下就好了- -

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 132000
#define PI 3.1415926535897932
#define EPS 1e-3
using namespace std;
struct Complex{
	double a,b;
	Complex() {}
	Complex(double _,double __):
		a(_),b(__) {}
	Complex operator + (const Complex &c) const
	{
		return Complex(a+c.a,b+c.b);
	}
	Complex operator - (const Complex &c) const
	{
		return Complex(a-c.a,b-c.b);
	}
	Complex operator * (const Complex &c) const
	{
		return Complex(a*c.a-b*c.b,a*c.b+b*c.a);
	}
	void operator += (const Complex &c)
	{
		*this=*this+c;
	}
	void operator -= (const Complex &c)
	{
		*this=*this-c;
	}
	friend Complex operator * (double x,Complex c)
	{
		return Complex(c.a*x,c.b*x);
	}
};
int n,m=131072;
Complex a[M],b[M],c[M],ans[M];
void FFT(Complex a[],int n,int type)
{
	static Complex temp[M];
	int i;
	if(n==1) return ;
	for(i=0;i<n;i+=2)
		temp[i>>1]=a[i],temp[i+n>>1]=a[i+1];
	memcpy(a,temp,sizeof(Complex)*n);
	Complex *l=a,*r=a+(n>>1);
	FFT(l,n>>1,type);FFT(r,n>>1,type);
	Complex root(cos(type*2*PI/n),sin(type*2*PI/n) ),w(1,0);
	for(i=0;i<n>>1;i++,w=w*root)
		temp[i]=l[i]+w*r[i],temp[i+(n>>1)]=l[i]-w*r[i];
	memcpy(a,temp,sizeof(Complex)*n);
}
int main()
{
	int i,x;
	cin>>n;
	for(i=1;i<=n;i++)
	{
		scanf("%d",&x);
		a[x  ]=Complex(1,0);
		b[x*2]=Complex(1,0);
		c[x*3]=Complex(1,0);
	}
	FFT(a,m,1);
	FFT(b,m,1);
	FFT(c,m,1);
	for(i=0;i<m;i++)
	{
		ans[i]+=(1.0/6.0)*(a[i]*a[i]*a[i]-3*b[i]*a[i]+2*c[i]);
		ans[i]+=(0.5)*(a[i]*a[i]-b[i]);
		ans[i]+=a[i];
	}
	FFT(ans,m,-1);
	for(i=0;i<m;i++)
		ans[i]=(1.0/m)*ans[i];
	for(i=0;i<m;i++)
	{
		x=int(ans[i].a+EPS);
		if(x) printf("%d %d\n",i,x);
	}
	return 0;
}


  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

PoPoQQQ

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值