使用EasyRec优化搜索广告推荐深度学习排序模型的性能

使用PAI-FeatureStore从MaxCompute加载数据并启动EasyRec模型,同时优化推理服务资源的利用,可以按照以下步骤进行:

  1. 特征工程与存储:

  2. 数据加载:

  3. 模型训练:

    • 使用加载的数据在PAI平台上训练EasyRec推荐模型。EasyRec是一个专门为推荐系统设计的框架,能够有效地处理各种推荐任务。
  4. 优化推理服务:

    • 批处理推理采用批处理的方式进行推理候选物品,而不是逐条处理。这可以提高CPU/GPU利用率,减少单位推理成本。
    • 选择合适的硬件配置:根据实际需要选择性价比最高的硬件(如GPU实例类型),并且合理设置实例数量。
    • 按需扩展:利用云平台PAI-EAS提供的弹性伸缩能力,在流量高峰期自动增加推理服务实例,在低谷期减少实例,以节省成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值