1 概要
本期内容分享一种改进的MUSIC算法,该算法主要用于解决MUSIC算法处理相干源信号鸡肋,或受相干源信号影响导致性能急剧下降的问题。众所周知,在面对来波方向为相干信号时,传统的基于子空间类的方法将失效,例如MUSIC、ESPRIT等方法。
近年来,相干信号的DOA估计一直以来都是空间谱估计领域的一个热点和难点问题。要实现对相干信号的DOA估计,首先需要对其进行解相干预处理以恢复相干信号协方差矩阵的秩。其中最为经典的解相干方法为空间平滑(Spatial Smoothing,SS),SS主要包括前向空间平滑(FSS)和后向空间平滑(FBSS)。SS算法的原理就是将阵列分成多个大小相同的重叠子阵,然后对各子阵列信号协方差矩阵求平均,以恢复协方差矩阵的秩。但是该方法是以减小阵列孔径为代价的,并且不论信号是否相干所能估计的信号数都限制在被减小的阵列(即子阵)孔径内。
为了在不牺牲阵列孔径的同时进一步提升相干信号的DOA估计性能,并且针对MUSIC算法不能有效估计出相干信号DOA的问题,吴志勇、饶伟和贾凤勤首次提出了一种改进的MUSIC算法,简称为I-MUSIC ( Improved MUSIC)算法。其主要思想源于不管信号是否相干,阵列接收信号矩阵的协方差矩阵的最大特征值所对应的特征向量都是所有信号源导向矢量的线性组合。因此,I-MUSIC算法首先选取了信号协方差矩阵的两个最大特征值所对应的特征向量,并利用特征向量中的各元素与第一个元素间的相关函数来构造两个特定的Toeplitz 矩阵,然后利用前后向空间平滑的思想得到这两个矩阵的无偏估计并求和的新的Toeplitz矩阵,最后利用MUSIC算法从中估计出相干信号DOA。
2 I-MUSIC算法原理
基于信号处理理论,无论信号是否相干,信号协方差矩阵R的最大特征值所对应的特征向量都是所有信源导向向量的线性组合。因此,可选择最大的两个特征值λ1和λ2对应的最大特征向量u1和u2来实现去相干。
首先令
式中,M表示阵元数量。把上式向量中的第一个元素作为参考元素,则与各元素的相关函数表示为
于是有
同理,r(-k+1)表示各个元素与的相关函数
于是有
由式(3)和式(5)可以构建第一个特定的Toeplitz矩阵
式中。同理,采用u2构建的第二个特定的Toeplitz矩阵为
根据Y1和Y2构建新的Toeplitz矩阵有
式中J表示M×M维的交换矩阵,即副对角线上的元素全为1,其余元素全为0。Toeplitz矩阵Y的秩等于相干源信号个数,并且Y中包含了各入射信号的波达方向,所以矩阵Y可以等效成相干入射信号的新协方差矩阵,因此可以通过协方差矩阵Y估计出相干信号的DOA,并且该矩阵的秩等于入射信号数,对应的阵列阵元数仍为M,即没有阵列孔径的损失。最后将构成的Y矩阵等效为信号的协方差矩阵,采用MUSIC算法即可估计出相干源信号的DOA信息,因此,MUSIC算法的空间谱可表示为:
式中Unn表示对Toeplitz矩阵Y特征分解后,由噪声和干扰张成的噪声子空间。对I-MUSIC算法总结如下:
3 仿真实验
仿真环境:Matlab2021b,Windows 11
仿真实验1:设置3个相干信号,入射角度分别为0°,13°,33°。阵元数量为M=12,信噪比SNR=30dB,阵元间隔为半波长,实验结果如图所示;
从上图的结果可以看出,对于相干源的估计,相比于传统的MUSIC算法,I-MUSIC算法拥有很强的抗相干源性能,而传统MUSIC算法在相干源估计情况下的性能不尽人意,在相同阵元条件下,降低信噪比SNR=8dB时,仿真结果如下图所示;
从结果来看,可见无论是低信噪比以及抗相干信号,I-MUSIC算法的性能都远远由于传统的MUSIC算法。
仿真实验2:设置7个相干源信号,入射角度分别为-60°、-40°、-20°、0°、20°、40°、60°。阵元数量M=8,SNR=10dB,快拍摄数N=512。I-MUSIC算法和MUSIC算法的仿真结果如下所示;
从结果来看,当阵元数量与信源方向的数量仅相差1时,传统MUSIC算法已经不能正确估计目标的DOA信息,而I-MUSIC算法仍能准确估算出目标的DOA信息。综上所述,不管从抗相干源,或低信噪比,亦或是阵元数量与信源数量相差很小的时候(前提是阵元数量必须大于信源数),I-MUSIC算法都有很高的鲁棒性,性能也远远优于传统的MUSIC算法。
4 总结
本期内容是给大家带来的I-MUSIC算法,主要用于解决相干源信号的DOA估计,同时具有很强的鲁棒性能。另外,如果本期能让对你有所帮助,希望你能毫不吝啬的给up主点点赞,谢谢大家的支持。
参考资料
吴志勇,饶伟,贾凤勤针对相干信号DOA估计的改进MUSIC算法0] .电讯技术,2023,63(9): 1355-1360
代码链接:I-MUSIC算法