Rachel-Zhang写的TP FN FP TN ROC
True Positive (真正, TP)被模型预测为正的正样本;可以称作判断为真的正确率
True Negative(真负 , TN)被模型预测为负的负样本 ;可以称作判断为假的正确率
False Positive (假正, FP)被模型预测为正的负样本;可以称作误报率
False Negative(假负 , FN)被模型预测为负的正样本;可以称作漏报率
True Positive Rate(真正率 , TPR)或灵敏度(sensitivity)
TPR = TP /(TP + FN)
正样本预测结果数 / 正样本实际数
True Negative Rate(真负率 , TNR)或特指度(specificity)
TNR = TN /(TN + FP)
负样本预测结果数 / 负样本实际数
False Positive Rate (假正率, FPR)
FPR = FP /(FP + TN)
被预测为正的负样本结果数 /负样本实际数
False Negative Rate(假负率 , FNR)
FNR = FN /(TP + FN)
被预测为负的正样本结果数 / 正样本实际数
精确度(Precision):
P = TP/(TP+FP) ; 反映了被分类器判定的正例中真正的正例样本的比重
准确率(Accuracy)
A = (TP + TN)/(P+N) = (TP + TN)/(TP + FN + FP + TN);
反映了分类器统对整个样本的判定能力——能将正的判定为正,负的判定为负
召回率(Recall),也称为 True Positive Rate:
R = TP/(TP+FN) = 1 - FN/T; 反映了被正确判定的正例占总的正例的比重