TP FN FP TN

Rachel-Zhang写的TP FN FP TN ROC
True Positive (真正, TP)被模型预测为正的正样本;可以称作判断为真的正确率

True Negative(真负 , TN)被模型预测为负的负样本 ;可以称作判断为假的正确率

False Positive (假正, FP)被模型预测为正的负样本;可以称作误报率

False Negative(假负 , FN)被模型预测为负的正样本;可以称作漏报率

True Positive Rate(真正率 , TPR)或灵敏度(sensitivity)
TPR = TP /(TP + FN)
正样本预测结果数 / 正样本实际数

True Negative Rate(真负率 , TNR)或特指度(specificity)
TNR = TN /(TN + FP)
负样本预测结果数 / 负样本实际数

False Positive Rate (假正率, FPR)
FPR = FP /(FP + TN)
被预测为正的负样本结果数 /负样本实际数

False Negative Rate(假负率 , FNR)
FNR = FN /(TP + FN)
被预测为负的正样本结果数 / 正样本实际数

精确度(Precision):
P = TP/(TP+FP) ; 反映了被分类器判定的正例中真正的正例样本的比重

准确率(Accuracy)
A = (TP + TN)/(P+N) = (TP + TN)/(TP + FN + FP + TN);

反映了分类器统对整个样本的判定能力——能将正的判定为正,负的判定为负

召回率(Recall),也称为 True Positive Rate:
R = TP/(TP+FN) = 1 - FN/T; 反映了被正确判定的正例占总的正例的比重

http://www.cnblogs.com/lvpengms/p/3806390.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值