resnet18[2,2,2,2],resnet34[3,4,6,3],resnet50[3,4,6,3],resnet101[3,4,23,3],resnet152[3,8,36,3]的含义

        最近在调基于resnet框架提取图像特征的代码时,由于初次接触resnet的代码,对里面的函数调用模块中的[2,2,2,2],[3,4,6,3]的理解比较模糊,比如以下代码:

def resnet18(pretrained=False, model_root=None, **kwargs):
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)

    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet18'], model_root)
        model_root = 'model/resnet18-5c106cde.pth'
        #加载预训练好的模型参数
        model_data = torch.load(model_root)
        #将模型参数加载到net中
        model.load_state_dict(model_data)
    return model


def resnet34(pretrained=False, model_root=None, **kwargs):
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet34'], model_root)
        model_root = 'model/resnet34-333f7ec4.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet50(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet50'], model_root)
        model_root = 'model/resnet50-19c8e357.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet101(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet101'], model_root)
        model_root = 'model/resnet101-5d3b4d8f.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet152(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet152'], model_root)
        model_root = 'model/resnet152-b121ed2d.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model

         先不管上面,我们先看这张关于resnet系列的结构说明图片:

         看图片中红框标记的区域,有没有豁然开朗,resnet18的[2,2,2,2]就代表相对应的conv2-x,conv3_x,conv4-x,conv5-x模块,要重复执行2次,resnet34的[3,4,6,3]道理类似

         如果能把以上数组里数字的代表意义搞清楚,那么结合关于resnet系列结构的图片,仔细阅读接下来的代码逻辑,会更进一步加深你对resnet的理解:

def conv3x3(in_planes, out_planes, stride=1):
    # "3x3 convolution with padding"
    #输入数据的通道数,输出数据的通道数
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)

#用于resnet18,resnet34
class BasicBlock(nn.Module):
    expansion = 1
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        #使存放数据的顺序与取出数据的顺序一致
        #比如:存,a,b,c,3,2,1,取:a,b,c,3,2,1
        m = OrderedDict()
        m['conv1'] = conv3x3(inplanes, planes, stride)
        m['bn1'] = nn.BatchNorm2d(planes)
        #inplace=True,进行覆盖运算
        m['relu1'] = nn.ReLU(inplace=True)
        m['conv2'] = conv3x3(planes, planes)
        m['bn2'] = nn.BatchNorm2d(planes)
        #nn.Sequential是一个有序容器,神经网络模块将按照在传入构造器的顺序依次被添加到计算图中执行
        self.group1 = nn.Sequential(m)

        self.relu= nn.Sequential(nn.ReLU(inplace=True))
        self.downsample = downsample

    def forward(self, x):
        if self.downsample is not None:
            residual = self.downsample(x)
        else:
            residual = x

        out = self.group1(x) + residual

        out = self.relu(out)

        return out

#用于resnet50,resnet101,resnet152
class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        m  = OrderedDict()
        m['conv1'] = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        #加速收敛,提高泛化能力,用于防止过拟合
        #使得每一层神经网络的输入保持相同的分布
        m['bn1'] = nn.BatchNorm2d(planes)
        #使小于0的值为0,大于等于0的保持不变
        m['relu1'] = nn.ReLU(inplace=True)
        m['conv2'] = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        m['bn2'] = nn.BatchNorm2d(planes)
        m['relu2'] = nn.ReLU(inplace=True)
        m['conv3'] = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        m['bn3'] = nn.BatchNorm2d(planes * 4)
        self.group1 = nn.Sequential(m)

        self.relu= nn.Sequential(nn.ReLU(inplace=True))
        self.downsample = downsample

    def forward(self, x):
        if self.downsample is not None:
            residual = self.downsample(x)
        else:
            residual = x

        out = self.group1(x) + residual
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()

        m = OrderedDict()
        m['conv1'] = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        m['bn1'] = nn.BatchNorm2d(64)
        m['relu1'] = nn.ReLU(inplace=True)
        m['maxpool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.group1= nn.Sequential(m)
        #这里的block是一个类
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.Sequential(nn.AvgPool2d(7))

        self.group2 = nn.Sequential(
            OrderedDict([
                #输入参数为:in_feature,out_feature
                ('fc', nn.Linear(512 * block.expansion, num_classes))
            ])
        )
        #用于初始化网络中的每个module
        #nn.modules()返回网络中的所有modules
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
    #blocks代表模块要重复进行的操作次数
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        #如果步长为1,使输入输出的通道数一致
        #输入通道!=输出通道*4,输入通道为64
        #也就是说,只要调用make_layer这个函数,downsample必执行,但执行发生在block操作之后
        #每个重复的卷积块的首次操作,都要在旁路连接上进行下采样操作
        #那么,该卷积块剩下的几次操作,就不再进行下采样操作,即在旁路连接上不进行下采样操作
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
        #list数组,用*转化,将layers拆成一个个元素
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.group1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        #把四维张量变为2维张量后,才能作为FC的输入
        x = x.view(x.size(0), -1)
        x = self.group2(x)

        return x


def resnet18(pretrained=False, model_root=None, **kwargs):
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)

    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet18'], model_root)
        model_root = 'model/resnet18-5c106cde.pth'
        #加载预训练好的模型参数
        model_data = torch.load(model_root)
        #将模型参数加载到net中
        model.load_state_dict(model_data)
    return model


def resnet34(pretrained=False, model_root=None, **kwargs):
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet34'], model_root)
        model_root = 'model/resnet34-333f7ec4.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet50(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet50'], model_root)
        model_root = 'model/resnet50-19c8e357.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet101(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet101'], model_root)
        model_root = 'model/resnet101-5d3b4d8f.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet152(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet152'], model_root)
        model_root = 'model/resnet152-b121ed2d.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model
def resnet18(pretrained=False, model_root=None, **kwargs):
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)

    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet18'], model_root)
        model_root = 'model/resnet18-5c106cde.pth'
        #加载预训练好的模型参数
        model_data = torch.load(model_root)
        #将模型参数加载到net中
        model.load_state_dict(model_data)
    return model


def resnet34(pretrained=False, model_root=None, **kwargs):
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet34'], model_root)
        model_root = 'model/resnet34-333f7ec4.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet50(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet50'], model_root)
        model_root = 'model/resnet50-19c8e357.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet101(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet101'], model_root)
        model_root = 'model/resnet101-5d3b4d8f.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model


def resnet152(pretrained=False, model_root=None, **kwargs):
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        # misc.load_state_dict(model, model_urls['resnet152'], model_root)
        model_root = 'model/resnet152-b121ed2d.pth'
        model_data = torch.load(model_root)
        model.load_state_dict(model_data)
    return model
ResNet50(Residual Network)是一种深度卷积神经网络模型,其设计的关键在于引入了残差块(residual block),以解决深层网络训练过程中的梯度消失问题。在ResNet50中,每一层可以大致分为四个部分: 1. **输入层**(Input Layer): 这通常是网络开始的地方,接收图像作为输入。 2. **第一个卷积层**(Convolutional Layer 1, or Conv1): 它通常包括一个大的3x3卷积核,用于对输入图像进行特征提取的初步操作。这之后可能会跟着一些批归一化(Batch Normalization)和激活函数(如ReLU)。 3. **残差块**(Residual Blocks, starting from Layer2): ResNet的核心结构。从第二层开始,每一层包含两个或更多残差块。这些块由一系列卷积层组成,但它们还包括跳跃连接(skip connection),使得网络可以直接学习到输入到当前层的直接映射,从而更容易训练深层网络。 - 每个残差块一般包括: - **身份映射**(Identity Mapping或Shortcut Connection): 保留输入数据,绕过某些卷积层,以便在网络深处仍然能够传播原始信息。 - **基础模块**(Basic Module): 包含一个或多个卷积层(可能有BN和ReLU),以及一个1x1卷积层用来减小通道数,便于后续的计算。 - **残差加权**(Residual Addition): 输入数据与经过基础模块变换后的数据相加,然后通过非线性激活继续传递。 4. **最后几层**(Transition Layers and Output Pooling): 最后几层可能包含降采样操作(如最大池化或步长卷积)来减少特征图的尺寸,最终进入全局平均池化(Global Average Pooling)层,再连接到全连接层进行分类任务。 在ResNet50中,Layer2-4的具体结构取决于网络的设计细节,但基本思路都是围绕残差块来构建更深的层次。每个ResNet50实例可能会有不同的block配置,比如常见的三种变体:ResNet-50, ResNet-101, 和 ResNet-152,它们的区别主要在于层数和残差块的数量。如果你需要详细了解某一层的具体实现,建议查阅官方论文或相关的代码库文档。[^4] [^4]: He K., Zhang X., Ren S., & Sun J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值