ResNet代码理解

        我们知道,网络越深,咱们能获取的信息越多,而且特征也越丰富。但是根据实验表明,随着网络的加深,优化效果反而越差,测试数据和训练数据的准确率反而降低了。这是由于网络的加深会造成梯度爆炸和梯度消失的问题。

        针对梯度爆炸和梯度消失的问题,我们通常会对输入数据和中间层的数据进行归一化操作(nn.BatchNorm2d()),从而让网络收敛,但是这个方法只会对几十层的网络有用,当网络层数越来越深,这一方法的效果会越来越差。因此这个时候引入了残差网络(ResNet)来有效的解决这一问题。

ResNet的block有俩种,分别是BasicBlock和Bottleneck,它们的结构如下图所示:

代码如下 :

def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

 首先conv3×3是一个输入维度in_planes,输出维度为out_planes,卷积核3×3,步长为1的卷积层。定义该函数是为了简化代码的书写,以免多次调用nn.Conv2d()函数。

BasicBlock函数:

如图所示,输入通道inplanes,调用conv3×3(即由3×3大小的卷积核卷积一次),随即归一化后通过ReLU函数激活,此时输出通道数为planes,作为下一个3×3卷积层的输入通道数,且输出的通道数仍然为planes。之后判断是否需要下采样操作,如果不需要则将第二个3×3卷积层的输出与最初的输入数据相加并由ReLU函数激活。

 Bottleneck函数:

如图所示,init()函数是预定义网络架构,forward函数是进行前向传播。该block中有三个卷积,分别是1x1,3x3,1x1,分别完成的功能就是维度压缩,卷积,恢复维度。故bottleneck实现的功能就是对通道数进行压缩,再放大。注意:这里的plane不再是输出的通道数,输出通道数应该就是plane*expansion,即4*plane。

ResNet函数:

class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1,1))
        #self.avgpool = nn.AdaptativeAvgPool((1,1), stride=1)
        self.fc1 = nn.Linear(512 * block.expansion, 1000)
        self.fc2 = nn.Linear(1000, 3)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        feat_D = self.layer2(x)
        x = self.layer3(feat_D)
        x = self.layer4(x)
        #print('Size at output',x.size())
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        #x = nn.Dropout()(x)
        x = nn.ReLU()(self.fc1(x))
        x = self.fc2(x)

        return x

首先我们需要清楚该函数传递的各个参数所代表的意思。

block:即上方所定义的bottleneck或basicblock。

layers:是一个数组,一般情况下由四个整数组成,表示该残差网络四个layer中每个layer包含多少个block。

num_classes:问题类别数。

resnet一共有5个阶段,第一阶段是一个7x7的卷积,stride=2,然后再经过池化层,得到的特征图大小变为原图的1/4。_make_layer()函数用来产生4个layer,可以根据输入的layers列表来创建网络。

这三个函数讲清楚后,后面的网络主体架构就很好理解,5种架构之间的不同在于使用的基础块是basicblock和bottlenek之间的不同以及每个layer里的堆叠的block参数的不同。因为ResNet一般有4个layer,每一个layer里面都是block的堆叠,所以以ResNet34举例,传入的[3, 4, 6, 3]就是每一个stack里面堆叠block的个数,故而造就了不同深度的ResNet。

downsample模块含义

在ResNet网络中有一个显眼的操作就是降采样操作,我们将ResNet函数中的相关部分抽出来看:

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

从代码中我们可以看到当步长不为1、输入维度不等于输出维度*4(expansion)时,表明需要建立一个 1 X 1 的卷积层,来改变通道数和改变图片大小。在resnet函数中的四层layer中只有第一层的stride为1,其余都为2。

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

因为当stride=2时会改变输出的shape,为了保证相加操作正常进行,所以使用 1 X 1 的卷积改变大小和通道。

### 回答1: resnet是一个非常流行的深度学习模型,在计算机视觉领域被广泛应用。在CSDN(中国最大的技术社交平台)上可以找到很多关于resnet代码的文章和教程。 在csdn上,有很多作者分享了他们的resnet代码实现和使用方法。这些文章通常包含了代码的解析和实际应用的说明。通过这些代码示例,我们可以学习和理解resnet的原理和实现方式。 在这些文章中,一般会介绍resnet的结构和特点,例如深度残差网络的概念和核心思想。然后作者会逐步讲解每一层的详细实现和参数设置,以及如何通过代码实现模型的训练和预测。 通过阅读这些文章,我们可以学习到如何使用Python和深度学习框架(比如PyTorch或TensorFlow)来实现resnet。通过这些代码示例,我们可以了解到如何构建resnet模型的网络结构,以及如何调整和优化模型的参数。 此外,我们还可以学习到一些关于数据预处理、训练过程和结果评估的技巧。这些经验对于我们自己实现或修改resnet代码非常有帮助。 总之,在csdn上可以找到很多关于resnet代码的资源。通过阅读这些文章和教程,我们可以更好地理解和应用resnet模型,以及深度学习领域的相关知识。 ### 回答2: ResNet深度学习领域中非常著名的神经网络模型之一,其突出特点是通过使用残差连接(residual connection)来解决深层网络训练中的梯度消失问题。这一概念的引入极大地促进了深度神经网络的训练和优化。 如果想要查看ResNet代码,可以在CSDN(中国最大的IT社区平台)上搜索相关资源。在CSDN上,可以找到许多博主分享的关于ResNet代码示例。这些示例包括不同的深度学习框架(如TensorFlow、PyTorch等)下的实现代码,以及适用于不同任务(如图像分类、目标检测等)的代码。 在查找ResNet代码的过程中,推荐按照具体任务需求进行筛选,以找到适合自己的实现代码。同时,也可以根据博主的博文评价和代码优劣进行选择。在选择合适的代码之后,可以通过阅读代码了解ResNet的具体实现原理和细节,以及如何在实践中应用该模型。 总之,如果想要找到ResNet代码,可以通过CSDN这一资源分享平台进行搜索。希望我的回答能够对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值