多模态医学图像检索:技术与应用
1. 引言
医学图像检索是现代医疗实践中的一个重要环节,它帮助医生从庞大的医学图像数据库中快速找到与当前病例相似的历史病例,从而辅助诊断和治疗决策。本文将详细介绍多模态医学图像检索的基本原理和技术实现,包括文本检索、视觉检索以及多模态检索的融合技术。
医学图像检索的目标是从一组图像中检索出与给定查询最相关的图像。它不仅是为了预测特定病例的疾病,更重要的是为医生提供参考,帮助他们做出更准确的诊断。通过咨询医学图像检索系统的输出,医生可以对自己的诊断更有信心,甚至可以考虑其他可能性。
2. 文本检索
2.1 文本特征
在基于文本的图像检索中,图像通常会手动标注关键词或简短标题,以描述其内容。这些关键词可以描述图像的成像方式、显示的身体部位、描绘的疾病或异常。文本检索的关键在于如何有效地表示和检索这些文本信息。
文本预处理
为了提取最关键的信息,文本检索的第一步是对图像标题进行预处理。预处理包括词干提取和停用词移除。词干提取将单词还原为其基本形式,而停用词移除则过滤掉常见的无意义词汇,如“的”、“是”等。预处理步骤如下:
- 分词 :将句子拆分为单词或短语。
- 词干提取 :将单词还原为其词干形式。
- 停用词移除 :移除常见但无意义的词汇。
2.2 权重模型
选择合适的权重模型对文本检索的性能有显著影响。以下是几种常用的权重
超级会员免费看
订阅专栏 解锁全文
433

被折叠的 条评论
为什么被折叠?



