视觉特征在多模态医学图像检索中的应用
1. 引言
医学图像检索是现代医疗实践中的重要组成部分,它可以帮助医生更准确地进行诊断。多模态医学图像检索结合了文本和视觉信息,通过综合这两种信息源,可以显著提高检索的准确性和效率。本文将重点探讨多模态医学图像检索中使用的视觉特征,包括它们的定义、提取方法以及在实际应用中的表现。
2. 视觉特征概述
在多模态医学图像检索中,视觉特征用于描述图像的视觉内容。这些特征通常是从图像中自动提取的数值型描述符,表示为数字向量。视觉特征的选择和提取对于检索性能至关重要。根据相关研究,低级特征因其计算成本低且适用于大规模图像数据库,成为了基于内容的图像检索系统的首选。
2.1 低级特征的优势
低级特征之所以受欢迎,主要是因为它们具备以下优点:
- 计算成本低 :低级特征的提取通常不需要复杂的计算资源,可以在短时间内完成。
- 适应性强 :它们可以应用于不同类型和规模的图像数据库,具有较高的灵活性。
- 描述性强 :尽管低级特征与人类感知无关,但它们能有效地捕捉图像的基本特征,如颜色、纹理等。
3. 颜色和边缘方向性描述符(CEDD)
CEDD是一种常用的低级特征,它结合了边缘方向直方图(EHD)和颜色直方图信息。CEDD的描述符大小限制在每幅图像54字节,这使得它非常适合大型图像数据库。以下是CEDD的主要特点:
- 结合颜色和边缘信息 :CEDD不仅考虑了
超级会员免费看
订阅专栏 解锁全文
2371

被折叠的 条评论
为什么被折叠?



