基于互逆点学习的未知DDoS攻击检测
1. 引言
在当今数字化时代,互联网服务已成为日常生活中不可或缺的一部分。尤其是新冠疫情爆发后,远程工作、虚拟会议和在线活动等在线服务的需求急剧增加,进一步加速了这一趋势。然而,对互联网的高度依赖也使我们面临着各种网络威胁,其中分布式拒绝服务(DDoS)攻击已成为一个严重的问题。
DDoS攻击通过利用被攻陷设备组成的僵尸网络,向目标系统发送大量流量,消耗其资源和带宽,导致合法用户无法正常访问。为了应对DDoS攻击,研究人员提出了多种防御机制,其中基于机器学习(ML)的入侵检测系统(IDS)取得了不错的效果。但大多数现有的基于ML的IDS主要关注已知的攻击特征,当遇到未知特征的攻击时,其准确性会大幅下降。
为了克服这一局限性,研究人员提出了开放集识别(OSR)的概念,通过改进深度学习方法来识别未知模式。本文提出了一种基于OSR的新型IDS模型,用于检测未知DDoS攻击。该模型结合了U-Net和互逆点学习(RPL),检测率约为99%,能够成功识别已知和未知的DDoS攻击,同时还能处理数据不平衡的情况。
2. 相关工作
2.1 DDoS攻击
DDoS攻击中,攻击者利用僵尸网络向目标网站或服务发送大量流量,使服务器不堪重负,导致系统崩溃或无法访问。相关研究对DDoS攻击类型和防御机制进行了分类和概述,防御机制包括过滤、速率限制和入侵预防系统等。DDoS攻击可针对任何在线服务或网站,会给企业和组织带来重大损失,包括财务损失、声誉损害甚至法律后果。
2.2 开放集识别
开放集识别(OSR)旨在解决分类任务中未知数据的问题。传统的封闭集训练模型仅
超级会员免费看
订阅专栏 解锁全文
610

被折叠的 条评论
为什么被折叠?



