10、基于互逆点学习的未知DDoS攻击检测

基于互逆点学习的未知DDoS攻击检测

1. 引言

在当今数字化时代,互联网服务已成为日常生活中不可或缺的一部分。尤其是新冠疫情爆发后,远程工作、虚拟会议和在线活动等在线服务的需求急剧增加,进一步加速了这一趋势。然而,对互联网的高度依赖也使我们面临着各种网络威胁,其中分布式拒绝服务(DDoS)攻击已成为一个严重的问题。

DDoS攻击通过利用被攻陷设备组成的僵尸网络,向目标系统发送大量流量,消耗其资源和带宽,导致合法用户无法正常访问。为了应对DDoS攻击,研究人员提出了多种防御机制,其中基于机器学习(ML)的入侵检测系统(IDS)取得了不错的效果。但大多数现有的基于ML的IDS主要关注已知的攻击特征,当遇到未知特征的攻击时,其准确性会大幅下降。

为了克服这一局限性,研究人员提出了开放集识别(OSR)的概念,通过改进深度学习方法来识别未知模式。本文提出了一种基于OSR的新型IDS模型,用于检测未知DDoS攻击。该模型结合了U-Net和互逆点学习(RPL),检测率约为99%,能够成功识别已知和未知的DDoS攻击,同时还能处理数据不平衡的情况。

2. 相关工作
2.1 DDoS攻击

DDoS攻击中,攻击者利用僵尸网络向目标网站或服务发送大量流量,使服务器不堪重负,导致系统崩溃或无法访问。相关研究对DDoS攻击类型和防御机制进行了分类和概述,防御机制包括过滤、速率限制和入侵预防系统等。DDoS攻击可针对任何在线服务或网站,会给企业和组织带来重大损失,包括财务损失、声誉损害甚至法律后果。

2.2 开放集识别

开放集识别(OSR)旨在解决分类任务中未知数据的问题。传统的封闭集训练模型仅

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值