数据结构查找算法之二叉查找树(二叉排序树)【附Java代码实现,图解】

  • 基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
  • 二叉查找树或者是空树,或者是具有以下特征:
    • 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
    • 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
    • 任意节点的左、右子树也分别为二叉查找树。
  • 复杂度分析:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。(最坏的情况为树结构变成了链表)
/**
* 二叉排序树中查找某关键字时,首先将被查找值同树的根结点进行比较,会有 3 种不同的结果:
* 1、如果相等,查找成功;
* 2、如果比较结果为根结点的关键字值较大,则说明该关键字可能存在其左子树中;
* 3、如果比较结果为根结点的关键字值较小,则说明该关键字可能存在其右子树中;
*/
//使用循环实现查找关键字
public BiTree searchBST1(BiTree bitree, dataType key){
    Bitree tree = bitree;
    while(bitree != null && tree.val != key){
        if(tree.val > key)
            tree = tree.left;
        else if(tree.val > key)
            tree = tree.right;
    }
    return tree;
}
//使用递归实现查找关键字
public BiTree searchBST(BiTree bitree, dataType key){
    if(bitree == null || bitree.val == key)
        return bitree;
    else if(bitree.val > key)
        return searchBT(bitree.left, key)
    else if(bitree.val < key)
        return searchBT(bitree.right, key)
}
/**
 * 二叉排序树本身是动态查找表的一种表示形式,有时会在查找过程中插入或者删除表中元素,当因为查找失败而
 * 需要插入数据元素时,该数据元素的插入位置一定位于二叉排序树的叶子结点,并且一定是查找失败时访问的最
 * 后一个结点的左孩子或者右孩子。
 * 插入成功返回true,如果树中有该元素不需要插入则返回false
 */
public boolean InsertBST(BiTree bitree, dataType key){
    if(bitree == null){
        bitree.val = key;
        return true;
    }
    
    if(bitree.val == key)
        return false;
    else if(bitree.val > key)
        return insertBST(bitree.left, key);
    else if(bitree.val < key)
        return insertBST(bitree.right, key);
}
/**
* 假设要删除的为结点 p,则对于二叉排序树来说,需要根据结点 p 所在不同的位置作不同的操作,有以下 3 种可能:
* 1、结点 p 为叶子结点,此时只需要删除该结点,并修改其双亲结点的指针即可;
* 2、结点 p 只有左子树或者只有右子树,如果 p 是其双亲节点的左孩子,则直接将 p 节点的左子树或右子树
*   作为其双亲节点的左子树;反之也是如此,如果 p 是其双亲节点的右孩子,则直接将 p 节点的左子树或右
*   子树作为其双亲节点的右子树;
* 3、结点 p 左右子树都有,此时有两种处理方式:
*   1)令结点 p 的左子树为其双亲结点的左子树;结点 p 的右子树为其自身直接前驱结点的右子树,如图 3 所示;
*   2)用结点 p 的直接前驱(或直接后继)来代替结点 p,同时在二叉排序树中对其直接前驱(或直接后继)做删除
*      操作。如图 4 为使用直接前驱代替结点 p:(这种方式更好,因为这样可以最大程度的保证原树的结构,而且
*      不会让树过于倾斜)
*/
public void deleteBST(BiTree p){
    //情况1,p为叶子节点,直接删除即可
    if(p.left == null && p.right == null)
        p == null;
    else if(p.left == null)     //左子树为空,只需用结点 p 的右子树根结点代替结点 p 即可;
        p = p.right;
    else if(p.right == null)    //右子树为空,只需用结点 p 的左子树根结点代替结点 p 即可;
        p = p.left;
    else{   //左右子树均不为空,采用第 2 种方式
        BiTree b = p.left;
        //循环遍历,找到p的直接前驱
        while(b.right != null)
            b = b.right;
        //如果p的直接前驱b有左子树,则将左子树放在b的位置
        if(b.left != null)
            b = b.left;
        p.val = b.val;      //删除p节点,用其原来直接前驱的元素代替
    }
}

image.pngimage.png

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值