- 基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
- 二叉查找树或者是空树,或者是具有以下特征:
- 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 任意节点的左、右子树也分别为二叉查找树。
- 复杂度分析:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。(最坏的情况为树结构变成了链表)
/**
* 二叉排序树中查找某关键字时,首先将被查找值同树的根结点进行比较,会有 3 种不同的结果:
* 1、如果相等,查找成功;
* 2、如果比较结果为根结点的关键字值较大,则说明该关键字可能存在其左子树中;
* 3、如果比较结果为根结点的关键字值较小,则说明该关键字可能存在其右子树中;
*/
//使用循环实现查找关键字
public BiTree searchBST1(BiTree bitree, dataType key){
Bitree tree = bitree;
while(bitree != null && tree.val != key){
if(tree.val > key)
tree = tree.left;
else if(tree.val > key)
tree = tree.right;
}
return tree;
}
//使用递归实现查找关键字
public BiTree searchBST(BiTree bitree, dataType key){
if(bitree == null || bitree.val == key)
return bitree;
else if(bitree.val > key)
return searchBT(bitree.left, key)
else if(bitree.val < key)
return searchBT(bitree.right, key)
}
/**
* 二叉排序树本身是动态查找表的一种表示形式,有时会在查找过程中插入或者删除表中元素,当因为查找失败而
* 需要插入数据元素时,该数据元素的插入位置一定位于二叉排序树的叶子结点,并且一定是查找失败时访问的最
* 后一个结点的左孩子或者右孩子。
* 插入成功返回true,如果树中有该元素不需要插入则返回false
*/
public boolean InsertBST(BiTree bitree, dataType key){
if(bitree == null){
bitree.val = key;
return true;
}
if(bitree.val == key)
return false;
else if(bitree.val > key)
return insertBST(bitree.left, key);
else if(bitree.val < key)
return insertBST(bitree.right, key);
}
/**
* 假设要删除的为结点 p,则对于二叉排序树来说,需要根据结点 p 所在不同的位置作不同的操作,有以下 3 种可能:
* 1、结点 p 为叶子结点,此时只需要删除该结点,并修改其双亲结点的指针即可;
* 2、结点 p 只有左子树或者只有右子树,如果 p 是其双亲节点的左孩子,则直接将 p 节点的左子树或右子树
* 作为其双亲节点的左子树;反之也是如此,如果 p 是其双亲节点的右孩子,则直接将 p 节点的左子树或右
* 子树作为其双亲节点的右子树;
* 3、结点 p 左右子树都有,此时有两种处理方式:
* 1)令结点 p 的左子树为其双亲结点的左子树;结点 p 的右子树为其自身直接前驱结点的右子树,如图 3 所示;
* 2)用结点 p 的直接前驱(或直接后继)来代替结点 p,同时在二叉排序树中对其直接前驱(或直接后继)做删除
* 操作。如图 4 为使用直接前驱代替结点 p:(这种方式更好,因为这样可以最大程度的保证原树的结构,而且
* 不会让树过于倾斜)
*/
public void deleteBST(BiTree p){
//情况1,p为叶子节点,直接删除即可
if(p.left == null && p.right == null)
p == null;
else if(p.left == null) //左子树为空,只需用结点 p 的右子树根结点代替结点 p 即可;
p = p.right;
else if(p.right == null) //右子树为空,只需用结点 p 的左子树根结点代替结点 p 即可;
p = p.left;
else{ //左右子树均不为空,采用第 2 种方式
BiTree b = p.left;
//循环遍历,找到p的直接前驱
while(b.right != null)
b = b.right;
//如果p的直接前驱b有左子树,则将左子树放在b的位置
if(b.left != null)
b = b.left;
p.val = b.val; //删除p节点,用其原来直接前驱的元素代替
}
}