使用知识图谱增强的RAG查询引擎

使用知识图谱增强的RAG查询引擎

在当今的人工智能技术中,知识图谱(Knowledge Graph)成为了一种非常有用的工具,可以帮助我们在信息检索和自然语言处理任务中获得更好的结果。本文将介绍如何使用知识图谱增强的RAG(Retrieve and Generate)查询引擎,并演示如何在Python中实现这一功能。

为什么选择知识图谱RAG查询引擎

知识图谱RAG查询引擎可以在以下两种场景中使用:

  1. 从文档中构建知识图谱,并使用LLM或本地模型。
  2. 利用现有的知识图谱进行查询。

本文将重点介绍第二种场景,即如何利用现有的知识图谱来增强查询结果。

基本准备工作

在开始使用知识图谱RAG查询引擎之前,我们需要安装一些必要的包,并进行一些基本的配置。下面是基本的安装步骤:

# 安装必要的包
!pip install llama-index-llms-azure-openai
!pip install llama-index-graph-stores-nebula
!pip install llama-index-llms-openai
!pip install llama-index-embeddings-azure-openai
!pip install llama-index

接下来,我们将配置OpenAI和Azure OpenAI的API。

配置OpenAI API

import os
import logging
import sys
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings

os.environ["OPENAI_API_KEY"] = "sk-..."  # 替换为你的OpenAI API密钥

logging.basicConfig(stream=sys.stdout, level=logging.INFO)  # 设置日志级别

# 定义LLM
Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.chunk_size = 512

配置Azure OpenAI API

from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding

# 配置Azure OpenAI
api_key = "<api-key>"  # 替换为你的Azure API密钥
azure_endpoint = "https://<your-resource-name>.openai.azure.com/"
api_version = "2023-07-01-preview"

llm = AzureOpenAI(
    model="gpt-35-turbo-16k",
    deployment_name="my-custom-llm",
    api_key=api_key,
    azure_endpoint=azure_endpoint,
    api_version=api_version,
)

embed_model = AzureOpenAIEmbedding(
    model="text-embedding-ada-002",
    deployment_name="my-custom-embedding",
    api_key=api_key,
    azure_endpoint=azure_endpoint,
    api_version=api_version,
)

Settings.llm = llm
Settings.embed_model = embed_model
Settings.chunk_size = 512

准备NebulaGraph

我们将使用NebulaGraphStore作为示例。在执行Graph RAG查询之前,需要确保有一个运行中的NebulaGraph集群,并定义了数据模式。以下是一些基本步骤:

# 安装NebulaGraph客户端
!pip install ipython-ngql nebula3-python

os.environ["NEBULA_USER"] = "root"
os.environ["NEBULA_PASSWORD"] = "nebula"  # 默认密码
os.environ["NEBULA_ADDRESS"] = "127.0.0.1:9669"  # 本地NebulaGraph地址

space_name = "llamaindex"
edge_types, rel_prop_names = ["relationship"], ["relationship"]  # 定义边类型和属性
tags = ["entity"]  # 定义标签

接下来,我们实例化NebulaGraphStore,并创建一个StorageContext。

from llama_index.core import StorageContext
from llama_index.graph_stores.nebula import NebulaGraphStore

graph_store = NebulaGraphStore(
    space_name=space_name,
    edge_types=edge_types,
    rel_prop_names=rel_prop_names,
    tags=tags,
)
storage_context = StorageContext.from_defaults(graph_store=graph_store)

执行Graph RAG查询

我们将使用RetrieverQueryEngine,并将其配置为KnowledgeGraphRAGRetriever。

from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import KnowledgeGraphRAGRetriever

graph_rag_retriever = KnowledgeGraphRAGRetriever(
    storage_context=storage_context,
    verbose=True,
)

query_engine = RetrieverQueryEngine.from_args(
    graph_rag_retriever,
)

然后,我们可以进行查询,例如:

from IPython.display import display, Markdown

response = query_engine.query("Tell me about Peter Quill?")
display(Markdown(f"<b>{response}</b>"))

可能遇到的错误

  1. API密钥错误: 请确保正确配置了OpenAI或Azure的API密钥。
  2. 网络连接问题: 确保能够访问所需的API和NebulaGraph服务器。
  3. 数据模式错误: 确保在NebulaGraph中正确创建了空间和标签。

如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!

参考资料:

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值