USB HOST芯片SL2.1A调试心得

本文记录了在使用SL2.1A USBHOST芯片进行开发时遇到的三个主要问题及解决方法:1) 插入电脑无法识别,通过万用表检测发现芯片DP脚对地电阻异常;2) 内部晶振不稳定,需外挂12M晶体以确保稳定性;3) 多输入设计导致识别问题,可能与DP, DM信号要求高有关,布局布线需谨慎处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SL2.1A是一颗1转4口的USB HOST芯片。它的外围电路非常简单,价格便宜。不过调试中遇到一些问题,记录一下。

1 识别不到USB的问题

一共焊了3片板子,结果插入电脑出现都不能识别到SL2.1A,除去2片焊接问题(一台是DM、DP短路,一台是松香有影响),一片可能是因为芯片本身有问题。拿万用表量了一下HOST端DM、DP对GND的电阻,发现这片芯片的DP脚对地只有200多K,其他正常的芯片是6M左右,更换芯片就好了。

2 外部晶振的问题

开始想使用内部晶振,结果发现不稳定,插个鼠标会乱跳,只能外挂12M晶体。

3 HOST端多输入的情况

本来打算USB可以多路输入,这样不限定HOST使用哪种线来链接,电路上设计了Type-A, Mini Type-B, Micro Type-B三种USB头,如下图中的USB3,USB4,USB5。

这样可以三选一选择输入,另外二个USB口还可以作为外部电源引入。

但是可以工作的2块板都有问题,其中一个是连接USB4的R4,R5贴电阻后就无法识别到Hub,另外一个是连接USB3的R2,R3贴电阻后无法识别到Hub。

这块可能是因为DP,DM要求比较高,Layout上要特别注意。如果有改板,这块需要再仔细修改一下。

### 使用XGBoost进行时间序列预测的示例教程 #### 准备环境与加载数据 为了使用XGBoost进行时间序列预测,首先需要安装必要的库并导入所需模块。确保环境中已安装`xgboost`, `pandas`, 和其他辅助工具。 ```python import pandas as pd from xgboost import XGBRegressor from sklearn.metrics import mean_absolute_error ``` 接着读取目标时间序列数据集,并将其转换成适合训练的形式[^1]。 #### 数据预处理 对于时间序列分析而言,特征工程至关重要。这通常涉及创建滞后变量、滚动窗口统计量以及日期属性提取等操作。例如: ```python def create_features(df, label=None): df['date'] = pd.to_datetime(df.index) df['hour'] = df['date'].dt.hour df['dayofweek'] = df['date'].dt.dayofweek df['month'] = df['date'].dt.month X = df[['hour', 'dayofweek', 'month']] if label: y = df[label] return X, y return X ``` 此函数会基于输入的数据框构建新的特征列,这些新特性有助于捕捉潜在的时间模式[^2]。 #### 构建与训练模型 定义好特征之后就可以初始化一个XGBoost回归器实例,并利用历史观测值来拟合该模型了。 ```python model = XGBRegressor(n_estimators=1000, learning_rate=0.05) train_X, train_y = create_features(train_df, label='target_column') test_X, test_y = create_features(test_df, label='target_column') model.fit(train_X, train_y, eval_set=[(test_X, test_y)], early_stopping_rounds=50, verbose=False) ``` 这里设置了早停机制以防止过拟合现象的发生。 #### 预测与评估性能 完成训练过程后即可应用所学得的知识对未来时刻做出推测;同时也可以通过比较真实结果同预期之间的差异度量(如MAE)来进行效果评测。 ```python preds = model.predict(test_X) print(f'Mean Absolute Error: {mean_absolute_error(preds, test_y)}') ``` 上述代码片段展示了如何计算平均绝对误差作为衡量标准之一。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值