OCR数据集github链接以及RCNN所用到的数据集介绍

这篇博客主要介绍了OCR领域的数据集,如SynthText训练数据集,以及用于性能评估的ICDAR 2003, ICDAR 2013, IIIT 5k和街景文本(SVT)测试数据集。同时提到了深度学习模型RCNN在OCR中的应用,并给出了相关资源链接。" 119601112,10511844,Oracle数据库操作详解,"['数据库', 'Oracle', 'SQL', '存储过程', '数据操作']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录


RCNN原论文数据集

训练数据集

首先,是b站上深度之眼出的关于CRNN论文解读以及原始代码解读。
论文中训练数据用的是合成的数据集Synth,其包括了800万幅训练图像及其对应的单词标签(这里个人有个一个思考:800万辐图像中就光包含了单词,而单词总量8万多,说明训练过程中每个单词出现了100次左右,个人理解就是量变产生质变,就是拿数据集喂出来的)

SynthText 自然场景图像数据集示例
在这里插入图片描述

测试数据集

测试数据集:ICDAR 2003 (IC03)、ICDAR 2013 (IC13)、IIIT 5k字(IIIT5k)和街景文本(SVT)。用于性能评估

IC03
包含251幅标有标记文本边界框的场景图像。忽略了包含非字母的数字字符和少于三个字符的图像,并剪切出860个文本图像的测试集。每个测试图像与一个含有50词的字典相关连。一个完整的词典是通过组合所有的每个图像的词典来建立的
IC13

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值