SuperPoint: Self Supervised Interest Point Detection and Description
2018年magicLeap发表了一篇文章,基于自监督训练的特征点检测和描述符提取方法,又是一个深度学习用于特征点提取和匹配的方法,与16年的LIFT相比,具有很大的优势。如果使用这种方式提取特征点描述符用于SLAM中,会对前端算法具有很大改善和提升;如果描述符具有优良特性,在定位场景下,可以对季节和环境光照具有更强的鲁棒性。
这篇文章提出了一种可以自我学习的的方法,通过构建pseudo-ground truth的特征点位置,并通过这些点本身来训练特征点检测器,从而避免了大量人力手工标注。
- 首先构建一个合成形状的数据集,图片包含简单的几何形状并具有明确的特征点,使用这些点来训练检测器 -- MagicPoint;
- 对未被标注的图像进行单应变换(Homographic Adaptation.), 使用上