笔记: SuperPoint: Self Supervised Interest Point Detection and Description 深度学习特征点检测

                                           SuperPoint: Self Supervised Interest Point Detection and Description

        2018年magicLeap发表了一篇文章,基于自监督训练的特征点检测和描述符提取方法,又是一个深度学习用于特征点提取和匹配的方法,与16年的LIFT相比,具有很大的优势。如果使用这种方式提取特征点描述符用于SLAM中,会对前端算法具有很大改善和提升;如果描述符具有优良特性,在定位场景下,可以对季节和环境光照具有更强的鲁棒性。

这篇文章提出了一种可以自我学习的的方法,通过构建pseudo-ground truth的特征点位置,并通过这些点本身来训练特征点检测器,从而避免了大量人力手工标注。

  1. 首先构建一个合成形状的数据集,图片包含简单的几何形状并具有明确的特征点,使用这些点来训练检测器 -- MagicPoint;
  2. 对未被标注的图像进行单应变换(Homographic Adaptation.), 使用上
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值