import from numpy,从numpy引入。
a = np.array([2,3.3])
torch.from_numpy(a)
a = np.ones([2,3])
torch.from_numpy(a)
print(a)
注意:小写的tensor接受的参数是现有的数据,大写的Tensor接受的数据的维度,大写也可以接受现有数据,必须以list形式表示出。
import from List
a = torch.tensor([2.,3.2])
print(a)
a = torch.FloatTensor([2.,3.2])#不建议使用,容易造成混淆
#常见用法为torch.FloatTensor(2,3),表示2*3的tensor
a = torch.tensor([ [2.,3.2],[1.,22.3] ])
print(a)
生成未初始化的tensor,未初始化的tensor一定要紧跟着写入数据的后续步骤,未初始化的tensor里面的数据是随机的
a = torch.empty(2)
print(a)
a = torch.Tensor(2,3)
print(a)
a = torch.IntTensor(2,3)
print(a)
a = torch.FloatTensor(2,3)
print(a)
设置tensor的默认类型,如:int,float,double等
最原始的默认为float型,增强学习一般使用double,其他使用float
a &