PyTorch 创建Tensor

本文介绍了如何在PyTorch中创建Tensor,包括从numpy导入、从List导入、生成未初始化的Tensor、设置默认类型以及各种初始化方法,如随机初始化、正态分布、full函数、arange、linspace、ones、zeros和eye等。
摘要由CSDN通过智能技术生成

import from numpy,从numpy引入。

a = np.array([2,3.3])
torch.from_numpy(a)

a = np.ones([2,3])
torch.from_numpy(a)
print(a)

注意:小写的tensor接受的参数是现有的数据,大写的Tensor接受的数据的维度,大写也可以接受现有数据,必须以list形式表示出。

import from List

a = torch.tensor([2.,3.2])
print(a)
a = torch.FloatTensor([2.,3.2])#不建议使用,容易造成混淆
#常见用法为torch.FloatTensor(2,3),表示2*3的tensor

a = torch.tensor([ [2.,3.2],[1.,22.3] ])
print(a)

生成未初始化的tensor,未初始化的tensor一定要紧跟着写入数据的后续步骤,未初始化的tensor里面的数据是随机的

a = torch.empty(2)
print(a)

a = torch.Tensor(2,3)
print(a)

a = torch.IntTensor(2,3)
print(a)

a = torch.FloatTensor(2,3)
print(a)

设置tensor的默认类型,如:int,float,double等

最原始的默认为float型,增强学习一般使用double,其他使用float

a &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值