PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。
近几年,越来越多的隐私计算技术被用于解决临床和研究数据共享中的隐私和安全问题。
当然,对这些技术的法律评估主要集中在合规性方面,尤其是在欧盟,《通用数据保护条例》(GDPR)限制了敏感个人数据(包括遗传、医疗和健康相关数据)的使用和转移。这让政府和企业对隐私计算越来越重视。
GDPR下的隐私安全挑战
在GDPR下,数据的管理人、控制人面临着诸多挑战:
-
GDPR规定数据管理人和控制人必须采取措施确保个人数据(包括患者数据)的可审计性。而且,GDPR还引入了删除权,允许个体请求特定的数据控制人或数据管理人删除其数据。
-
健康研究和个性化医学中大数据技术的的创新和应用,导致了医院和医疗机构收集数据的越来越多。一边对数据的需求越来越多,另一边又需要确保患者隐私,尤其是在医院和医疗机构之间共享数据的情况下,这就对机构组织和技术都提出了挑战。
-
在GDPR下,确定数据是否匿名化相对的方法意味着数据是否匿名化取决于数据和数据共享环境。因此,目前尚不清楚GDPR是否允许针对研究项目的一般或“广泛”同意。
-
最后,患者数据应该如何用于