【CUDA】五、基础概念:Coalescing合并用于内存优化

本文介绍了如何在CUDA编程中通过优化内存访问,特别是使用Coalescingwrites(合并写操作)和内存对齐,提升矩阵乘法的性能。重点讲解了内存事务、线程索引布局、行主序存储以及对齐访问的重要性,以及C++和CUDA中对齐机制的实践应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先来看之前的例子:

矩阵乘法中的 Coalescing writes

刚才的代码中,可以观察到两个for循环,这里可以进行优化。

“coalescing writes”(合并写操作)

“coalescing writes”(合并写操作)是一种优化内存访问模式的技术,它能显著提高内存带宽的利用效率。这种技术尤其对于全局内存访问非常重要,因为全局内存访问速度相比于核心计算速度要慢得多。

底层原理

  1. 内存事务:当GPU的线程尝试访问全局内存时,这些访问被分组为内存事务。每个事务可以一次性读取或写入多个连续的字节。使用适当大小的数据类型以匹配内存事务的大小。
  2. 内存对齐:为了有效地合并写操作,线程访问的内存地址应该是对齐的,并且连续线程访问的地址也应该是连续的。确保数据结构和数组在内存中对齐。
  3. 线程访问模式:如果一个线程块中的所有线程都按照一定的模式(例如,线程i访问地址i)访问连续的内存地址,则这些访问可以被合并成一个或几个内存事务。设计线程块和线程索引以便线程以线性和连续的顺序访问内存。减少线程内的条件分支,以保持连续的内存访问模式。

代码

__global__ void MatrixMultiplyCoalesced(float *A, float *B, float *C, int N) {
   
    // 计算行和列索引
    int row = blockIdx.y 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值