时间序列预测 STGODE: Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting 学习笔记

STGODE

Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting

现有的工作通常使用浅图卷积网络(gnn)和时间提取模块分别对空间和时间依赖性进行建模。
然而由于:
(1)浅层gnn无法捕获远程空间相关性,
(2)仅考虑空间连接而忽略了大量的语义连接。

为此提出了时空图常微分方程网络(STGODE)

具体来说,通过基于张量的常微分方程(ODE)捕捉时空动态,从而构建更深层次的网络,并同步利用时空特征。
为了更全面地理解网络,模型中考虑了语义邻接矩阵,并使用设计良好的时间dialated卷积结构来捕获长期时间依赖性。

在多个真实世界的交通数据集上评估我们的模型,并在最先进的基线上实现了卓越的性能。

STGODE能够利用更远距离的地理邻居和语义邻居的特征信息,有助于准确捕捉实时动态并过滤无效信息,而STGCN作为浅层网络,受附近邻居较少的影响,因此性能不稳定

地理邻居和语义邻居的特征信息+深层次网络


一、背景与模型设计

在这里插入图片描述
在这里插入图片描述


二、邻接矩阵的构造

在这里插入图片描述


三、Tensor-based Spatial-Temporal Graph ODE 基于张量的时空图ODE

在这里插入图片描述


四、最终构建的常微分方程

相当于是用ODESolver代替了之前的图卷积,用TCN的输出和给出的邻接矩阵作为输入
在这里插入图片描述


五、Temporal Convolutional Blocks 时间卷积模块

1-D dilated temporal convolutional 1D膨胀卷积
在这里插入图片描述


六、消融实验

在这里插入图片描述


总结

为了解决复杂的时空问题,已经提出了大量的工作,但很少有人关注如何在不受过度平滑问题影响的情况下提取远程依赖关系。本文提出了一种新的基于张量的时空预测模型STGODE。这是第一次尝试将连续微分方程连接到交通领域道路网络的节点表示,从而能够构建更深层次的网络并利用更广泛的依赖关系。此外,语义邻居的参与极大地提高了模型的性能。
论文原文:
在这里插入图片描述

代码可讨论分享

其他笔记:
STGODE笔记
Understanding Adjoint Method of Neural ODE

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值