高等数学---第一章连续,可导和可微的关系

本文探讨了高等数学中一元函数的连续与可导性之间的关系。阐述了可导必然连续,但连续不一定可导的概念,并通过反例说明。同时,解释了可微与连续、可导的关系,以及在实际判断中如何运用导数定义来确定函数的性质。
摘要由CSDN通过智能技术生成

可导必然连续,连续不一定可导(这是对于一元函数而言的,对于多元函数则不是这样)
在这里插入图片描述

1为什么可导必然连续?

因为只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
为什么在卷子上是用导数定义判断是否可导,然后用导函数判断是否连续。
关于这一点,我至今不得而知,但我知道,如果我想拿到这五分,我就要记住要用导数定义判断是否可导,然后用导函数判断是否连续。

2为什么连续不一定可导?

反例为f(x)=|x|
在这里插入图片描述

3 为什么可微必然连续?

在这里插入图片描述

4为什么连续不一定可微呢?

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值