可导必然连续,连续不一定可导(这是对于一元函数而言的,对于多元函数则不是这样) 1为什么可导必然连续? 因为只有左右导数存在且相等,并且在该点连续,才能证明该点可导。 为什么在卷子上是用导数定义判断是否可导,然后用导函数判断是否连续。 关于这一点,我至今不得而知,但我知道,如果我想拿到这五分,我就要记住要用导数定义判断是否可导,然后用导函数判断是否连续。 2为什么连续不一定可导? 反例为f(x)=|x| 3 为什么可微必然连续? 4为什么连续不一定可微呢?