锁相放大器(LIA)基本原理

本文介绍锁相放大器(LIA)基本原理。

锁相放大器(LIA),英文名称:Lock-In Amplifier,在微弱信号检测领域使用非常广泛,比如科研电生理信号测量,传感器信号测量等。本文从理论上分析锁相放大器(LIA)基本原理。

1.基本概念

1)适用范围

提取被随机噪声(白噪声)和1/f噪声(低频噪声)污染的有用信号

2)基本原理

锁相放大器是用来检测微弱信号,这些信号中通常伴随着比信号本身数千倍的噪声。锁相放大器由其特殊的方法可以精确的测量这些微弱信号。这种方法便是基于信号的相关性。

a)输入信号被周期性信号(方波或正弦波)调制

b)正弦信号具有完备性,噪声信号是随机信号(白噪声),且随机信号与正弦信号不具备相关性

锁相放大器的核心技术为相敏检波(PSD)。传统的处理微弱信号的方法是采用放大器,但放大器会同时放大有用信号和噪声,如果没有带宽限制或滤波,将会导致信噪比(SNR)比较差,因此若想精确的测量出这些信号,就需要采用滤波器来净化这些信号,提高信噪比(SNR)。而相敏检波可以被看作是一个具有很窄带宽的带通滤波器。相敏检波(PSD)基本框图如下图。

其中,S_{I}(t)为输入信号+噪声,S_{R}(t)为参考信号,它们是具有相同频率的信号。

2.单相锁相放大器

单相锁相放大器框图如下图。

其中,

S_{I}(t)=A_{I}\sin (\omega t+\varphi )+B(t)为输入信号,式中A_{I}\sin (\omega t+\varphi )为测试信号,也就是我们的有用信号,B(t)为总噪声。

S_{R}(t)=A_{R}\sin (\omega t+\delta )为参考信号,它与输入信号有相同的频率,但它们之间有一定的相位差。

经过相敏检波(PSD)后,得(使用积化和差公式):

S_{psd}=S_{I}(t)S_{R}(t)=A_{I}A_{R}\sin (\omega t+\varphi )\sin (\omega t+\delta )+B(t)A_{R}\sin (\omega t+\delta ) \\=\frac{1}{2}A_{I}A_{R}\cos (\varphi -\delta )-\frac{1}{2}A_{I}A_{R}\cos (2\omega t+\varphi +\delta )+B(t)A_{R}\sin (\omega t+\delta )

输出分3部分,第1部分为直流信号,第2部分为2倍频的一个信号,可由低通滤波器滤掉,第3部分为噪声和参考信号的乘积,因为正弦信号是周期性的,且与噪声信号不具有相关性,因此这项积分为0(会被LPF滤掉)。

经过低通滤波器(LPF)后,得:

S_{Output}=\frac{1}{2}A_{I}A_{R}\cos (\varphi-\delta)

为最终输出信号,如果我们调节\varphi\delta使之相位差为0,A_{R}为已知,就可以知道测试信号,也就是有用信号的幅度值。

3.双相锁相放大器

双相锁相放大器也叫正交锁相放大器,它包含2个相敏检波(PSD),其结构框图如下图。

前面介绍单相锁相放大器时,我们会去调节2个相位差,但这样会导致精度的不稳定性和不安全。因此才有了双相锁相放大器。其中,

S_{I}(t)=A_{I}\sin (\omega t+\varphi )+B(t)为输入信号,式中A_{I}\sin (\omega t+\varphi )为测试信号,也就是我们的有用信号,B(t)为总噪声。

参考信号分2部分,且相位差为90度,为:

\left\{\begin{matrix} S_{R0}(t)=A_{R}\sin (\omega t+\delta ) \\ S_{R1}(t)=A_{R}\cos (\omega t+\delta )\end{matrix}\right.

经过PSD0后,可得(使用积化和差公式):

S_{pd0}=S_{I}(t)S_{R0}(t)=\left [A_{I}\sin (\omega t+\varphi ) +B(t) \right]A_{R}\sin (\omega t+\delta )\\=A_{I}A_{R}\sin (\omega t+\varphi )\sin (\omega t+\delta )+A_{R}B(t)\sin (\omega t+\delta )\\=\frac{1}{2}A_{I}A_{R}\cos (\varphi-\delta )-\frac{1}{2}A_{I}A_{R}\cos (2\omega t+\varphi+\delta ) +A_{R}B(t) \sin(\omega t+\delta )

SPD0输出分3部分,第1部分为直流信号,第2部分为2倍频的一个信号,可由低通滤波器滤掉,第3部分为噪声和参考信号的乘积,因为正弦信号是周期性的,且与噪声信号不具有相关性,因此这项积分为0(会被LPF滤掉)。

经过PSD1后,可得(使用积化和差公式):

S_{pd1}=S_{I}(t)S_{R1}(t)=\left [A_{I}\sin (\omega t+\varphi ) +B(t) \right]A_{R}\cos (\omega t+\delta )\\=A_{I}A_{R}\sin (\omega t+\varphi )\cos (\omega t+\delta )+A_{R}B(t)\cos (\omega t+\delta )\\=\frac{1}{2}A_{I}A_{R}\sin (\varphi-\delta )+\frac{1}{2}A_{I}A_{R}\sin (2\omega t+\varphi+\delta ) +A_{R}B(t) \cos(\omega t+\delta )

SPD1输出分3部分,第1部分为直流信号,第2部分为2倍频的一个信号,可由低通滤波器滤掉,第3部分为噪声和参考信号的乘积,因为正弦信号是周期性的,且与噪声信号不具有相关性,因此这项积分为0(会被LPF滤掉)。

经过低通滤波器(LPF)后,得:

\left\{\begin{matrix} X=S_{Output0}=\frac{1}{2}A_{I}A_{R}\cos(\varphi-\delta ) \\ Y=S_{Output1}=\frac{1}{2}A_{I}A_{R}\sin(\varphi-\delta ) \end{matrix}\right.

X和Y的平方和开根号,对\frac{Y}{X}求反正切可得:

\left\{\begin{matrix} R=A_{I}=\frac{2\sqrt{X^{2}+Y^{2}}}{A_{R}} \\ \theta =\varphi-\delta=\arctan \frac{Y}{X}\end{matrix}\right.

这样,可以知道测试信号,也就是有用信号的幅度值。

4.离散化

由于计算机的使用,锁相放大器(LIA)中的参考信号和输入信号可以经过ADC采样进行离散化,就出现了数字锁相放大器(DLIA),实际产品中,这部分的实现可配合FPGA或DSP进行。

总结,本文介绍了锁相放大器(LIA)基本原理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值