欧几里得算法(脑补链接)求最大公约数(Python)

欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。

假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:

1997 / 615 = 3 (余 152)

615 / 152 = 4(余7)

152 / 7 = 21(余5)

7 / 5 = 1 (余2)

5 / 2 = 2 (余1)

2 / 1 = 2 (余0)

至此,最大公约数为1

简单来说就是用大数除小数,然后接着将每个式子里面的除数不断除以余数直到余数为零,那么最后的除数便是公约数。

代码:

def gcd(x, y):
    dividend = max(x,y)#被除数
    divider = min(x,y)#除数
    remainder = dividend % divider#余数
    while True:
        if remainder == 0:
            break
        dividend = divider
        divider = remainder
        remainder = dividend % divider
        
    return divider

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值