python实现用欧几里得算法求得两数的最大公约数

本文介绍了如何使用欧几里得算法(辗转相除法)在Python中计算两个正整数的最大公约数。通过递归的方式详细展示了算法过程,并给出了具体示例,如计算1997和615的最大公约数。
摘要由CSDN通过智能技术生成

python实现用欧几里得算法求得两正整数的最大公约数

欧几里德算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。

假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里德算法,是这样进行的:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1。
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
用递归实现如下图所示

def gcd(x, y):
    if y:
        return gcd(y, x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值