python实现用欧几里得算法求得两正整数的最大公约数
欧几里德算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。
假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里德算法,是这样进行的:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1。
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
用递归实现如下图所示
def gcd(x, y):
if y:
return gcd(y, x