线性代数基础9--正交矩阵与行列式基础,代数余子式

1,正交基与正交矩阵
标准正交向量组中,向量之间满足两两正交,并且每个基的长度为1
在这里插入图片描述
将标准正交向量组成一个矩阵Q.则有一个重要的性质,并且不要求Q一定为方阵.如下
在这里插入图片描述
这里我们将标准正交矩阵,并且只有在Q为方阵的情况下才,简称为正交矩阵.
强调方阵是因为可逆
在这里插入图片描述
也许有一个问题是正交矩阵是否可逆,但是正交矩阵符合可逆的定义,我们还找出了它的可逆矩阵,(如果这两个矩阵乘积为单位矩阵,并且是方阵,那么它们互为可逆),所以Q一定可逆,也就可以说明,正交向量一定线性无关.是可以证明的,有兴趣可以网上查看.也可以简单的从正交向量几何意义解释,两个向量垂直当然除了0没有组合可以让其结果为0向量

这里有一个注意的点,一般只有方阵才考虑逆矩阵

Q的例子
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值