1,正交基与正交矩阵
标准正交向量组中,向量之间满足两两正交,并且每个基的长度为1
将标准正交向量组成一个矩阵Q.则有一个重要的性质,并且不要求Q一定为方阵.如下
这里我们将标准正交矩阵,并且只有在Q为方阵的情况下才,简称为正交矩阵.
强调方阵是因为可逆
也许有一个问题是正交矩阵是否可逆,但是正交矩阵符合可逆的定义,我们还找出了它的可逆矩阵,(如果这两个矩阵乘积为单位矩阵,并且是方阵,那么它们互为可逆),所以Q一定可逆,也就可以说明,正交向量一定线性无关.是可以证明的,有兴趣可以网上查看.也可以简单的从正交向量几何意义解释,两个向量垂直当然除了0没有组合可以让其结果为0向量
这里有一个注意的点,一般只有方阵才考虑逆矩阵
Q的例子