从知识视角理解软件开发

软件构造中的核心知识:业务知识与架构知识

在软件构造过程中,最关键的两类知识是业务知识架构知识。业务知识回答“什么是正确的软件”,而架构知识解决“如何正确地构造软件”。从这两个方面深入理解软件构造,可以帮助我们在设计和开发过程中做出更明智的决策。

1. 业务知识:定义正确的软件

业务知识是关于如何解决现实问题的知识,包括业务的目标、规则、限制、和已有的解决方案。它定义了“正确的软件”是什么,即软件应实现哪些功能来满足业务需求。

  1. 业务知识的来源与特点

    • 问题驱动:业务知识源于对现实世界问题的理解,是为了在软件中解决这些问题。
    • 不等同于功能点:业务知识并非直接对应软件的功能点,而是表现为待解决的问题、规则和限制条件。在软件实现中,业务知识才映射为功能点。例如,同样的审批流程,现实中可能用邮件、微信群完成,而在软件中可能通过OA系统的特定工作流实现。
    • 组织与流程的影响:业务知识不仅存在于软件系统中,还嵌入在组织的流程与人员中。当软件接手部分业务知识或改变其范围时,往往伴随组织流程的变更,如从邮件办公模式切换到微信办公模式,组织的流程会相应调整。
  2. 业务知识在软件研发中的作用

    • 传递与学习过程:软件研发是业务知识的传递与学习过程,研发流程因此具备迭代特性。每次迭代包括:探测(构建软件)、感知(反馈验证)、响应(改进方案)。在产品生命周期内,这一过程类似于精益创业中的“构建-度量-学习”循环,持续验证软件是否满足业务需求。
    • 转化为软件需求:在研发之前,需要将业务知识转化为目标解决方案(如业务架构愿景)。根据这一解决方案,将业务知识分解为具体的软件需求,定义不同业务模块的功能。
  3. 复杂认知模式:业务知识的转化过程充满不确定性,体现为复杂的认知模式:

    • 感知:对业务问题的初步理解。
    • 分析:根据业务架构或解决方案进行问题处理。
    • 响应:生成软件需求,分配给不同的业务模块。
2. 架构知识:正确构造软件的方法

架构知识是关于如何有效构造软件的知识,涵盖技术决策和设计模式,解决软件的性能、可靠性、可扩展性等非功能性需求,保证软件能够正确实现业务需求。

  1. 架构知识的来源与特点

    • 技术视角的解决方案:架构知识从技术视角定义系统结构和组件交互方式,解决性能、扩展性、安全性等非功能性问题,是软件系统的技术蓝图。
    • 影响非功能性质量:架构知识直接影响系统的整体质量,如性能优化、可靠性保障和可扩展性设计。这些非功能性质量虽然用户不直接感知,但对用户体验至关重要。
    • 任务分解的指导:架构知识在任务分解过程中发挥指导作用,确保软件需求正确映射到架构组件,避免架构腐化(即任务划分错误导致的架构失效)。
  2. 架构知识在软件构造中的作用

    • 设计与决策依据:架构知识用于制定设计决策,如选择合适的技术栈、确定系统分层、定义服务接口等。这些决策影响软件的开发效率和质量。
    • 指导功能与非功能性质量平衡:架构知识帮助团队在构造过程中平衡功能性与非功能性质量,确保软件不仅满足业务功能,还具备良好的性能、安全性和可用性。
    • 任务分解与架构腐化:通过架构指导任务分解,将需求按架构规则分配到合适的组件。架构腐化往往源于分解过程中架构未能有效指导,导致持续的错误划分。
  3. 庞杂认知模式:架构知识的应用也遵循庞杂模式:

    • 感知:对软件问题的初步理解。
    • 分析:根据架构处理问题,进行技术分析和设计。
    • 响应:分解任务到架构组件,确保系统整体协调。
3. 功能性与非功能性质量的平衡

在软件构造过程中,功能性质量非功能性质量相辅相成,软件既要实现其核心任务,又需在性能、安全性、可用性等方面表现出色。为了实现这一平衡,需采用综合的质量保证措施:

  1. 代码审查:建立在反馈基础上的复杂模式措施,主要包括探测(成员实现功能)、感知(团队反馈评估)、响应(改进方向)。

  2. 测试策略:基于分析的庞杂模式措施,包括感知(理解需求边界)、分析(分解为不同种类测试)、响应(完成测试)。

总结

业务知识与架构知识在软件构造中的作用分别回答了“什么是正确的软件”和“如何正确构造软件”这两个核心问题。通过理解这两类知识及其应用场景,可以有效指导软件研发的每一个环节,确保软件既符合业务需求,又能在技术上稳定、高效地运行。

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值