Prompt提示词——常见的Prompt框架

本文详细介绍了BROKE、CHAT、CRISPE等15种用于指导人工智能模型的Prompt框架,包括它们的原理、功能、优缺点以及适用场景,帮助用户更有效地传达任务需求并优化模型输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是一些常见的Prompt框架,包括它们的原理、功能、使用场景、优缺点以及示例:

  1. BROKE框架

    • 原理:BROKE是一个结合了OKR(Objectives and Key Results)方法论的框架,通过提供背景、角色、目标、关键结果(我要什么具体效果试验并调整)和演变步骤来设计高效的Prompt。
      其中演变步骤有三种方法自由组合
      a、改进输入:从答案的不足之处着手改进背景B,目标O与关键结果R
      b、改进答案:在后续对话中指正chatGPT答案缺点
      c、重新生成:尝试在Prompt不变的情况下多次生成结果,做优化
    • 功能:帮助用户明确任务的背景、角色、目标和关键结果,并通过迭代和调整来优化输出。
    • 使用场景:适用于目标设定和项目管理,特别是在需要明确目标和跟踪进度的情境中。
    • 优点:结构化明确,有助于目标的设定和跟踪。
    • 缺点:可能需要多次迭代来达到最佳效果。
    • 示例
      Background: 作为一名软件开发者,需要提升编程技能以适应新技术。
      Role: 你是一名有多年经验的软件工程师。
      Objectives: 学习并掌握最新的编程语言和开发框架。
      Key Results: 完成3个使用新语言的项目,参与至少2个线上编程课程。
      Evolve: 根据项目反馈和课程学习,每月调整学习计划。
      
  2. CHAT框架

    • 原理:CHAT框架侧重于角色、背景、目标和任务四个核心部分,以提供全面的交互指导。
    • 功能:通过定义角色和背景,明确目标和任务,使得大模型能够提供更有针对性的回应。
    • 使用场景:适合于需要个性化响应和深入交流的情况,如客服支持、个性化推荐等。
    • 优点:交互更加个性化,能够提供针对性的输出。
    • 缺点:可能需要更多的上下文信息来确保准确性。
    • 示例
      Role: 营养顾问。
      Background: 客户想要健康饮食,但对某些食物过敏。
      Ambition: 寻找适合的食物和饮食计划。
      Task: 提供一周的健康饮食菜单,考虑到客户的过敏情况。
      
  3. CRISPE框架

    • 原理:CRISPE框架通过定义能力和角色(ChatGPT应扮演什么角色)、提供洞察(提供你请求的背后简介、背景和上下文)、明确声明(你要求GPT做什么)、设定个性(你希望GPT以何种风格、个性或方式回应)和进行实验(请求GPT为你回复多个示例)来创建结构化的Prompt。
    • 功能:确保Prompt具有明确的目的和结构,使大模型能够更有效地理解和回应用户请求。
    • 使用场景:适用于内容创作和决策支持,尤其是在需要模型提供多样化解决方案时。
    • 优点:有助于创建内容丰富、结构清晰的Prompt。
    • 缺点:可能需要较多的时间和精力来构思和细化每个部分。
    • 示例
      Capacity and Role: 作为市场分析师,分析最新消费趋势。
      Insight: 目标受众是年轻消费者,对可持续产品感兴趣。
      Statement: 提供关于可持续消费趋势的分析报告。
      Personality: 报告应包含数据图表和清晰结论。
      Experiment: 探索不同数据源和分析方法,提供多个分析角度。
      
  4. CARE框架

    • 原理:CARE框架强调上下文指导、行动、结果和示例四个关键要素,以确保Prompt的清晰和有效性。
    • 功能:通过提供上下文、明确行动和期望的结果,以及给出示例,CARE框架帮助大模型更好地理解和回应用户的需求。
    • 使用场景:适用于教育和培训,帮助用户理解复杂概念或流程。
    • 优点:通过示例增强理解,使交互更加直观。
    • 缺点:可能需要额外的资源来准备和提供示例。
    • 示例
      Context: 学生正在学习基础数
### Prompt提示词的作用与价值 在AI写作和其他自然语言处理应用中,Prompt提示词扮演着至关重要的角色。这些提示词不仅指导模型生成预期的内容,还能够显著影响输出的质量和准确性。 #### 提示词作为沟通桥梁 提示词充当了人类意图与机器理解之间的桥梁[^1]。通过精心设计的提示词,用户可以有效地传达期望的结果给AI系统,使得后者能够在特定上下文中提供更加贴切的回答或创作内容。 #### 增强控制力与定制化能力 利用提示词,开发者可以获得更强的控制权来调整最终产出的形式、风格乃至具体内容。例如,在创建故事时可以通过指定主题、人物设定等要素让算法按照预设方向发展情节;而在撰写技术文档方面,则能强调术语的一致性和精确度[^2]。 #### 改善交互体验 对于基于对话的应用程序而言,良好的提示机制有助于提升用户体验——它可以使交流过程变得更加流畅自然,并减少误解发生的可能性。当涉及到复杂查询或是多轮次互动场景下尤为明显,因为每次回应都依赖于前一次输入所提供的线索来进行推理判断。 #### 实现高效的信息提取与总结 特别是在面对大量文本资料的情况下,借助重复某些核心概念的方式可以让大型语言模型专注于提炼出最重要的信息点,从而帮助快速形成高质量的小结或者概述版本。 ```python def generate_summary(text, key_phrases): """ 使用关键短语生成文本摘要 参数: text (str): 需要被概括的文章主体. key_phrases (list of str): 关键短语列表. 返回: summary (str): 自动生成的文字概览. """ # 这里仅展示框架逻辑,实际实现会更为复杂 repeated_text = " ".join([phrase for phrase in key_phrases]) prompt = f"请根据以下重点{repeated_text}对这段话进行精炼:{text}" # 调用API或其他方式获取结果... response = call_ai_api(prompt) return process_response(response) # 示例调用 summary = generate_summary( "这是一篇很长的技术论文...", ["神经网络", "深度学习"] ) print(summary) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pumpkin84514

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值