Sarsa算法

一、Sarsa算法

  • TD只能估计state values
  • Sarsa可以直接估计action values
  • 也会用Sarsa找到最优策略

第一部分:给定策略的action values

假定已经有了经验,有trajectory

第二部分:寻找最优策略

二、Q-learning

 区别只在用的是max

 Q-learning求解贝尔曼最优方程

 off-policy和on- policy

  • behavior policy生成经验。
  • target policy更新接近最优策略。

 当这两种策略相同时是on-policy

 off-policy优势:

 如何判断:

 例1:Sarsa on-policy

  例2:MC on-policy

   例3:Q-learning off-policy

s_ta_t确定,那么s_{t+1}a_{t+1}可以直接得到,不依赖任何策略。

 

 on-policy版本:

 off-policy版本:

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值