Policy gradient方法

目录

  第一部分:原理

一、基础

将策略写成函数,θ是策略的参数,ω是价值的参数。

好处:

 表格和函数策略的区别

  1. 如何定义最优策略?

2.如何访问动作的概率?

 3.如何更新策略?

 核心

 第一步:定义目标函数

 第二步:梯度优化寻找最优策略

 问题:

目标函数怎么确定?

如何计算梯度?

二、定义目标函数

第一种定义:average state value

 

 d该如何处理分为两种情况
 和策略Π无关

  和策略Π有关

vΠ的另一种定义:

 

 

 第二种定义:average one-step reward

 

 

 

 

 三、求梯度

 

 

 

 

 由于输出策略每一个都是大于0,那么策略一定是随机的、探索性的。

 四、REINFORCE

 真实梯度可以用一个随机的代替。

 然而,qΠ我们也不知道,用q_t(s,a)近似q_{\pi}(s,a)

1.怎么采样?

 2.怎么理解

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值