Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

三十多个开源数据集 | 故障诊断再也不用担心数据集了!

Python轴承故障诊断 (一)短时傅里叶变换STFT-CSDN博客

Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型_基于残差混合域注意力cnn的轴承故障诊断及其时频域可解释性-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

注意:本模型继续加入 凯斯西储大学(CWRU)轴承故障诊代码 全家桶中,之前购买的同学请及时更新下载

全网最低价,入门轴承故障诊断最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN-Transformer模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_凯斯西储大学轴承数据集-CSDN博客

1 模型整体结构

模型整体结构如下所示:

2 轴承数据加载与预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 数据预处理,制作数据集

3 基于Pytorch的CNN-Transfromer轴承故障诊断分类

3.1 定义CNN-Transfromer分类网络模型

注意:输入数据维度为[32, 1, 1024], 先送入CNN网络进行1d的卷积池化,然后再把卷积池化的空间特征送入Transformer进行信号特征增强,最终送入全连接层和softmax进行分类。

3.2 设置参数,训练模型

100个epoch,准确率将近100%,CNN-Transformer网络分类效果显著,CNN-Transformer模型能够充分提取轴承故障信号的全局空间和局部特征,收敛速度快,性能特别优越,效果明显。

注意调整参数:

  • 可以适当增加 CNN层数和隐藏层维度数,微调学习率;

  • 增加Transformer编码器层数和维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

4 代码、数据整理如下:


### CNN-Transformer模型轴承故障检测中的应用 #### 数据准备与预处理 为了构建有效的CNN-Transformer混合模型来解决轴承故障检测问题,数据的质量至关重要。通常采用凯斯西储大学(CWRU)提供的标准轴承测试数据集作为实验基础[^3]。该数据集中包含了不同负载条件以及多种故障类型的振动信号记录。 对于原始采集得到的时间序列形式的数据,在输入至神经网络之前需经历一系列必要的转换操作: 1. **降噪和平滑化**:去除噪声干扰以提高信噪比; 2. **标准化/归一化**:使各维度特征处于相同量级范围内; 3. **分窗切片**:将连续长时间段内的测量值分割成固定长度的小片段以便于后续分析; 这些步骤有助于提升最终训练效果并加快收敛速度。 ```python import numpy as np from sklearn.preprocessing import StandardScaler def preprocess_data(raw_signals, window_size=1024): scaler = StandardScaler() # Normalize the raw signals across all samples normalized_signals = scaler.fit_transform(raw_signals.reshape(-1, 1)).reshape(raw_signals.shape) windows = [] labels = [] for i in range(0, len(normalized_signals)-window_size+1, window_size//2): # Overlapping by half of window size window = normalized_signals[i:i+window_size] label = get_label_for_window(i) # Function to determine fault type based on position windows.append(window) labels.append(label) return np.array(windows), np.array(labels) ``` #### 构建CNN-Transformer架构 结合卷积层提取局部空间结构的能力和自注意力机制捕捉全局依赖性的优势,设计了一种新颖的端到端学习框架——即所谓的“CNN-Transformer”。具体来说, - 利用多个堆叠的一维卷积核作用于每一段窗口化的时序样本之上,从而自动挖掘潜在的有效表征向量; - 经过若干轮次编码器变换后输出高阶语义表示矩阵供下游任务调用; 此过程不仅简化了传统手工选取特征的工作流程,而且提高了系统的泛化能力和鲁棒性。 ```python import torch.nn as nn class CNNEncoder(nn.Module): def __init__(self, input_channels=1, num_classes=7): super(CNNEncoder, self).__init__() self.conv_layers = nn.Sequential( nn.Conv1d(input_channels, 64, kernel_size=7), nn.ReLU(), nn.MaxPool1d(kernel_size=2), nn.Conv1d(64, 128, kernel_size=5), nn.ReLU(), nn.MaxPool1d(kernel_size=2), nn.Conv1d(128, 256, kernel_size=3), nn.ReLU(), nn.AdaptiveAvgPool1d(output_size=(1)) ) self.fc_layer = nn.Linear(in_features=256, out_features=num_classes) def forward(self, x): batch_size = x.size(0) features = self.conv_layers(x).view(batch_size,-1) logits = self.fc_layer(features) return logits class TransformerModel(nn.Module): def __init__(self, d_model=256, nhead=8, num_encoder_layers=6, dim_feedforward=512, dropout=0.1, activation="relu"): super().__init__() encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers) def forward(self, src): output = self.transformer_encoder(src) return output.mean(dim=1) # Global average pooling over sequence length dimension ``` #### 训练与评估策略 在整个开发周期内,始终遵循严格的交叉验证原则,并利用独立保留下来的测试集合衡量算法的实际效能指标如准确率、召回率等统计学度量。此外,还应考虑引入早停法防止过拟合现象的发生,确保所建立起来的方法论具备良好的迁移特性适用于更广泛场景之中。 通过上述方法,可以有效地实现对滚动轴承健康状况监测的目的,进而辅助工程师们制定科学合理的维修计划降低意外损失风险[^1].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值