数列极限的理解

一. 数列

数列是特殊的序列,全部由数字组成。

1.1 通项公式 与 有通项公式的数列

如果存在某种以正整数为定义域的函数, 使得数列每一项的 标号 和数列每一项的值满足某种关系。
则这个函数被称为这个数列的 通项公式.
且通项公式足以描述整个数列.

eg:  1, 1/2, 1/3 ... 1/x

其通项公式为 f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1
其定义域,也就是数列的标号范围为: x ∈ ( 0 , + ∞ ) x \in (0, +\infty) x(0,+)

1.2 数列通项公式的另一种表达形式

这种表达方式可能会使人困惑(x 会被联想为函数中的因变量,其实不是)

eg:  1, 1/2, 1/3 ... 1/n

通项公式: x n x_n xn
其中, x 代表函数名, n 代表函数因变量.
x n x_n xn 的本质为函数: x ( n ) = 1 n x(n) = \frac{1}{n} x(n)=n1, n ∈ ( 0 , + ∞ ) n \in (0, +\infty) n(0,+)

1.3 关于数列通项公式的定义域解释

接下来我们以 x n x_n xn 来表达数列的通项
谨记, x n x_n xn 是一个函数.

n 不能取 0, 因为规定。
n 不能取 + ∞ +\infty +,

  • 因为 + ∞ \infty 大于任何实数,而数列的标号只能是实数.

二. 极限

极限: 只能无限接近, 永远触碰不到.

2.11 数列极限的定义

教科书上描述极限定义的语言非常的严谨,且不易懂。这也是本篇博文的重点.

符号语言描述为:
n → ∞ , x n → A n\rightarrow\infty,x_n\rightarrow A n,xnA
或者:
lim ⁡ n → ∞ x n = A \lim_{n\to\infty}{x_n} = A nlimxn=A

箭头代表 趋近于, 即无限接近,但永远不会取到.
A代表:被趋近的那个值.
总含义为:

x (也就是通项公式的因变量) 无限趋近于 ∞ \infty 时, x n x_n xn 所代表的值 无限趋近于常数 A.

  所以千万不要被 lim 式子中的 = 号给蒙了。

其不代表 n → ∞ n\rightarrow\infty n 时, x n 的 值 为 A x_n 的值为 A xnA ! ! !
其不代表 n → ∞ n\rightarrow\infty n 时, x n 的 值 为 A x_n 的值为 A xnA ! ! !
其不代表 n → ∞ n\rightarrow\infty n 时, x n 的 值 为 A x_n 的值为 A xnA ! ! !
 而代表:
n → ∞ n\rightarrow\infty n 时, x n x_n xn 的值 趋近 为 A ! ! !
n → ∞ n\rightarrow\infty n 时, x n x_n xn 的值 趋近 为 A! ! !
n → ∞ n\rightarrow\infty n 时, x n x_n xn 的值 趋近 为 A ! ! !

2.12 数列极限严谨而又难懂的定义

从古希腊开始,人们就追求数学上的极致严谨。
如何严谨的表示: “当n趋向于无穷大的时候,这个数列的值是无限接近某个值” ??

A: “啥是极限??”
B: “当n趋向于无穷大的时候, 极限就是 X n X_n Xn 无限接近于 A”
A:“我是杠精,你这说的一点也不严谨啊!你说无限接近,这个无限你怎么表示???”
B: “你随便说一个数 ϵ \epsilon ϵ(大于0)”
B: “不管你给的 ϵ \epsilon ϵ 有多小”
B: “总是存在一个数 n(大于0)”
B: “其 x n 与 A 的 距 离 值 x_n与A的距离值 xnA 比你这个 ϵ \epsilon ϵ 要小”

A: “你就吹吧你,你找出这个 N 来给我看看”
B: “你想啊, 0 到 + ∞ \infty 之间有无限个数. 从 x 0 到 x ∞ x_0 到 x\infty x0x 之间也有无限个项”
B: “从 x 0 到 x ∞ x_0到x_\infty x0x, 与 A 之间的距离越来越小。因为有无限个项, 你就随便给个 ϵ \epsilon ϵ>0. 我都能从左往右找,并找到一个 x n x_n xn 与 A 的距离小于你”
A: “你这不是耍流氓嘛。不过确实可以啊”
A: “奥,懂了. 这就是 无限接近 啊”

A"那为啥书上说,存在 N >0, n > N. 使 ∣ x n − A ∣ < ϵ |x_n - A| < \epsilon xnA<ϵ. 为什么非得用这个 N??"
B:“这个我是真的不会.”

所以,完整的定义为
∀ ϵ > 0 , ∃ N > 0 , 当 n > N , 则 ∣ x n − A ∣ < ϵ \forall\epsilon>0, \exist N>0, 当 n > N, 则 |x_n - A| < \epsilon ϵ>0,N>0,n>N,xnA<ϵ

2.13 数列极限的几何意义

∣ x n − A ∣ < ϵ |x_n - A| < \epsilon xnA<ϵ
= > ϵ − A < x n < ϵ + A => \epsilon-A < x_n < \epsilon+A =>ϵA<xn<ϵ+A

2.14 特别注意

  • 数列 x n {x_n} xn的极限与前有限项无关.
  • ϵ 与 N 的 作 用 \epsilon 与 N 的作用 ϵN
  • 几何意义
  • 子数列收敛定律:
如果一个数列 xn 有极限,
那么其奇数项构成的数列x2n-1 和 偶数项构成的数列 x2n 都有极限。 
而且他们三个的极限都为 A

即同一个数列中
lim ⁡ n → ∞ x 2 n − 1 = A \lim_{n\rightarrow\infty}x_{2n-1} = A limnx2n1=A
lim ⁡ n → ∞ x 2 n = A \lim_{n\rightarrow\infty}x_{2n} = A limnx2n=A
如果 A == A, 则数列 x n x_n xn 才有极限,且极限为 A.

2.21 函数的极限

前面我们说过数列的通项公式本质就是函数.
通项公式 x n x_n xn 与 f(x) 是函数的两种不同写法.

但对数列通项函数而言, f(x) 中 x的取值只能为正整数.
这一点很重要,要记住了.

2.22 自变量趋于无穷大时的函数极限

 定义

lim ⁡ x → ∞ f ( x ) = A \lim_{x\to\infty}{f(x)} = A xlimf(x)=A
∀ > 0 , ∃ X > 0 , 当 x > X , 则 ∣ f ( x ) − A ∣ < ϵ \forall>0, \exist X>0, 当 x > X, 则 |f(x) - A| < \epsilon >0,X>0,x>X,f(x)A<ϵ

2.23 自变量趋于无穷小时的函数极限

 定义

总有一个<-X 的 x比 ξ 小

lim ⁡ x → ∞ f ( x ) = A \lim_{x\to\infty}{f(x)} = A xlimf(x)=A
∀ ϵ > 0 , ∃ X > 0 , 当 x < − X , 则 ∣ f ( x ) − A ∣ < ϵ \forall\epsilon>0, \exist X>0, 当 x < -X, 则 |f(x) - A| < \epsilon ϵ>0,X>0,x<X,f(x)A<ϵ

2.24 自变量趋于无穷时的函数极限

 定义

对两边同时约束

lim ⁡ x → ∞ f ( x ) = A \lim_{x\to\infty}{f(x)} = A xlimf(x)=A
∀ ϵ > 0 , ∃ X > 0 , 当 ∣ x ∣ > X , 则 ∣ f ( x ) − A ∣ < ϵ \forall\epsilon>0, \exist X>0, 当 |x| > X, 则 |f(x) - A| < \epsilon ϵ>0,X>0,x>X,f(x)A<ϵ

2.25 自变量趋于定值时的函数极限

x → x 0 , f ( x ) ∈ A x\to x_0, f(x)\in A xx0,f(x)A
此时函数 f(x) 的定义域为  x ∈ ( − ∞ , x 0 ) ∣ ∣ x ∈ ( x 0 , + ∞ ) x\in(-\infty, x_0) || x\in(x_0, +\infty) x(,x0)x(x0,+)

x 只能无限趋近于 x 0 x_0 x0但不能等于 x_0.
如何形容  lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}{f(x)} = A xx0limf(x)=A 呢??
在这里插入图片描述
不管你给的 ϵ > 0 \epsilon>0 ϵ>0 有多小. 
总能找到(一定存在)一个值 ξ \xi ξ :
在这里插入图片描述
使得 0 < ∣ x − x 0 ∣ < ξ 0 < |x-x_0| <\xi 0<xx0<ξ 如图所示:
在这里插入图片描述
那么这个时候在 两条蓝线中的任意一点,都能找到 一个 x 满足 ∣ f ( x ) − A ∣ < ϵ |f(x)-A| < \epsilon f(x)A<ϵ

总结

  • 默认的,在数列极限中. n → ∞ n\rightarrow\infty n 就相当于 n → + ∞ n\rightarrow+\infty n(这是由于定义域,都强调过了)
  • 函数极限中则分为
    • x → + ∞ x\rightarrow+\infty x+ 单侧
    • x → − ∞ x\rightarrow-\infty x  单侧
    • x → ∞ x\rightarrow\infty x 两边都考虑

那么就得到一个推论:
lim ⁡ x → ∞ f ( x ) = A ⇔ lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → − ∞ f ( x ) = A \lim_{x\rightarrow\infty}{f(x)=A} \Leftrightarrow \lim_{x\rightarrow+\infty}{f(x)} = \lim_{x\rightarrow-\infty}{f(x)} =A xlimf(x)=Ax+limf(x)=xlimf(x)=A
注意: 左极限与右极限都等于 A, 才能推出 极限等于 A.

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值