Machine Learning
文章平均质量分 96
我的机器学习之路
lcg_magic
埋头耕耘,抬头仰望。
展开
-
激活函数 Sigmod 及其导数
sigmod 是最常见的激活函数之一。其图像和导数如文章所示。原创 2024-09-04 21:17:05 · 1428 阅读 · 0 评论 -
Python 包 dhg 中超图的数据格式
下面是官方介绍DHG(DeepHypergraph) 是基于 PyTorch 的深度学习包, 可用于图神经网络以及超图神经网络。其支持从顶点到顶点从一个域的顶点到另一个域的顶点从顶点到超边,、从超边到顶点从顶点集到顶点集等低阶或高阶信息传递的通用框架。其支持大量低阶关联结构(图、有向图、二分图等)以及高阶关联结构(超图等)。大量基于谱域的操作(例如基于拉普拉斯的平滑)和基于空域的操作(例如从域到域的信息传递)集成在不同的关联结构中。原创 2024-06-20 13:26:39 · 1325 阅读 · 0 评论 -
超图论文细品——2019年AAAI《Hypergraph Neural Networks》
文章提出了一种名为超图神经网络的框架,用于高维数据的表示学习。该方法英文称呼为 Hypergraph Neural Networks,简写为HGNN。原创 2024-06-18 18:54:57 · 2038 阅读 · 0 评论 -
超图(Hypergraph)基础——论文细品——《Learning with hypergraphs: Clustering, classification, and embedding》
要想了解超图,首先需要知道图的概念。图,是由多个顶点以及连接顶点的边组成。顶点表示对象;边连接了两个顶点,表示两个顶点之间的关系。中文术语英文术语图Graph节点Node顶点Vertex边Edge注意:顶点和节点是相同的概念,不同的文献称呼不同。这里统一为顶点。超图,则是在图的基础上进行了扩展。图中每条边代表两个顶点之间的关系,也既是说一条边中有两个顶点,顶点个数等于 2。而超图中的边可以表示多个顶点之间的关系,也既是说一条边中可以有多个顶点,顶点个数可以大于 2。原创 2024-06-16 20:34:49 · 2065 阅读 · 1 评论 -
Python 实现简单的超图 Hypergraph
在数学中,超图(Hypergraph)是一种广义上的图,是有限集合中最一般的离散结构,在信息科学、生命科学等领域有着广泛的应用。普通图,一条边只能连接两个顶点,而超图的一条边可以连接任意数量的顶点。原创 2024-06-12 17:22:07 · 1053 阅读 · 0 评论 -
拉普拉斯矩阵(Laplacian Matrix)
文章目录1. 无向加权图 GGG2. 邻接矩阵 WWW3. 度矩阵 DDD4. 拉普拉斯矩阵 LLL1. 无向加权图 GGG图 GGG,一般用顶点集 VVV 和顶点之间的边集 EEE 表示,G=(V,E).G=(V,E).G=(V,E).其中,V={v1,v2,…,vn}V=\{v_1,v_2, \dots, v_n\}V={v1,v2,…,vn},E={⟨vi,vj⟩∣i,j=[1 .. n]}E=\{\langle v_i, v_j \rangle \mid i,原创 2020-12-28 20:59:30 · 3999 阅读 · 5 评论 -
特征选择 Relief 方法
文章目录1. 原理2. 公式2.1 二分类2.2 多分类1. 原理2. 公式2.1 二分类2.2 多分类原创 2020-12-12 20:18:02 · 2260 阅读 · 7 评论 -
信息熵、条件熵、联合熵、互信息和条件互信息
机器学习,信息理论,信息熵的定义、条件熵的定义、联合熵的定义、互信息的定义、条件互信息的定义原创 2019-07-14 23:08:12 · 3136 阅读 · 3 评论 -
信息熵
机器学习,信息理论, 信息熵,熵,信息熵简介原创 2019-07-14 14:02:21 · 1710 阅读 · 0 评论 -
信息熵在决策表中的应用
机器学习 信息理论 信息熵 决策表本文主要详细说明了信息熵在决策表中的应用。原创 2019-07-12 22:45:01 · 659 阅读 · 0 评论 -
信息熵和条件熵的计算
机器学习,信息理论,信息熵与条件熵原创 2019-07-12 19:34:58 · 19296 阅读 · 4 评论