超图(Hypergraph)基础——论文细品——《Learning with hypergraphs: Clustering, classification, and embedding》


1 什么是超图

要想了解超图,首先需要知道图的概念。

,是由多个 顶点 以及连接顶点的 组成。

  • 顶点表示对象;
  • 边连接了两个顶点,表示两个顶点之间的关系。
中文术语英文术语
Graph
节点Node
顶点Vertex
Edge

注意:顶点和节点是相同的概念,不同的文献称呼不同。这里统一为顶点。

超图,则是在图的基础上进行了扩展。图中每条边代表两个顶点之间的关系,也既是说一条边中有两个顶点,顶点个数等于 2。而超图中的边可以表示多个顶点之间的关系,也既是说一条边中可以有多个顶点,顶点个数可以大于 2。

注意:这里不讨论顶点连接自身的情况。

超图,是由多个 顶点 以及连接顶点的 组成。

  • 顶点表示对象;
  • 边连接了多个顶点,表示多个顶点之间的关系。
中文术语英文术语
超图Hypergraph
节点Node
顶点Vertex
Edge

2 为什么需要超图

2.1 引入

图和超图来源于生活,服务于生活。我们从生活中的实际场景出发来回答这个问题。

假设小明和小文共同在某期刊上发表了一篇文章,那么可以用图来表示小明、小文以及发表文章之间的关系,如下图所示:
图的示例
其中:

  • 圈表示顶点
  • 不同颜色的圈区分不同的顶点(对象)。

蓝色圈表示小明,绿色圈表示小文,中间的黑色连线是边,表示小明和小文共同发表文章这件事。

假设他们的团队增加了,新增了一个小莉。小明、小文、小莉三个人共同发表了另外一篇文章,那么应该怎么表示呢?
一个自然而然的想法,就是新增一个顶点,然后将两两之间连接起来,如下图所示:
图
但实际上,这样的图,可行吗?
按照之前对图的解读,那么上面这个图会解读成:

小明和小文共同发表了一篇文章
小明和小莉共同发表了一篇文章
小文和小莉共同发表了一篇文章

从图中解读出来的意义和我们实际要表示的意义完全不一样了。

那么如何表示多个对象(顶点)之间的关系呢?这个时候就需要超图出马了。
超图表示的小明、小文、小莉三者共同发表一篇文章的关系如下图所示:
在这里插入图片描述上面这个超图中,有三个顶点(圈圈表示),分别是蓝色圈表示的小明,绿色圈表示的小文,橙色圈表示的小莉;以及一条边(虚线),连接了三个顶点。

2.2 例子

论文中给出了一个例子,来比较“直观”地感受一下图和超图表示同一个“复杂”问题的差异。

假设:
有一群作者,用集合 E E E 来表示。令 E = { e 1 , e 2 , e 3 } E=\{e_1, e_2, e_3\} E={e1,e2,e3},则表示有 3 个作者,分别是 e 1 e_1 e1 e 2 e_2 e2 e 3 e_3 e3;有一些文章,用集合 V V V 来表示。令 V = { v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 } V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\} V={v1,v2,v3,v4,v5,v6,v7},则表示有 7 篇文章,分别是 v 1 v_1 v1 v 2 v_2 v2 v 3 v_3 v3 v 4 v_4 v4 v 5 v_5 v5 v 6 v_6 v6 v 7 v_7 v7
在这里插入图片描述

批注:这个是原文的表格。我认为这个表格有一点点问题,最后一行应该删除。

这个表格表示了这一群作者与这些文章之间的关系。
如果作者 e j e_j ej 是文章 v i v_i vi 的创作者, ( v i ; e j ) = 1 (v_i; e_j) = 1 (vi;ej)=1;否则的话呢, ( v i ; e j ) = 0 (v_i; e_j) = 0 (vi;ej)=0

那么根据这个表格可以获取到一些信息:

序号信息
(1)作者 e 1 e_1 e1 创作了文章 v 1 v_1 v1 v 2 v_2 v2
(2)作者 e 2 e_2 e2 创作了文章 v 5 v_5 v5 v 6 v_6 v6 v 7 v_7 v7
(3)作者 e 3 e_3 e3 创作了文章 v 2 v_2 v2 v 3 v_3 v3 v 4 v_4 v4 v 6 v_6 v6
(4)文章 v 1 v_1 v1 是独属于作者 e 1 e_1 e1
(5)文章 v 2 v_2 v2 是作者 e 1 e_1 e1 e 3 e_3 e3 共同创作
(6)

假设: 将文章 v i v_i vi 作为顶点,任意两篇文章如果至少存在一个共同作者,那么代表这两篇文章的顶点之间就存在边;否则的话,这两个顶点之间不存在边。

那么依据上面的条件假设,就可以得到下面的图:
在这里插入图片描述

解读:
以上定义是论文中的原始定义,我初看的时候比较懵逼。其实换个说法,更简单。所有的文章上面都有作者名字,寻找两篇文章的共同作者,不就是看两篇文章是否是同一个人写的吗?那么这样思考的话,只需要去查询某个作者所写的文章,任意两篇文章之间都应该有一条边。
比如,作者 e 1 e_1 e1,写的文章集合为 { v 1 , v 2 } \{v_1, v_2\} {v1,v2},任意两篇文章之间都应该有一条边(因为文章 v 1 v_1 v1 v 2 v_2 v2 至少存在一个共同作者,那就是 e 1 e_1 e1),所以顶点 v 1 v_1 v1 v 2 v_2 v2 之间存在一条边。作者 e 2 e_2 e2,写的文章集合为 { v 5 , v 6 , v 7 } \{v_5, v_6, v_7\} {v5,v6,v7},所以 v 5 v_5 v5 v 6 v_6 v6 之间存在一条边, v 5 v_5 v5 v 7 v_7 v7 之间存在一条边, v 6 v_6 v6 v 7 v_7 v7 之间存在一条边。同理可得,作者 e 3 e_3 e3 涉及的顶点。

那么,如果用 超图 来表示呢?请看下图:
在这里插入图片描述
将文章 v i v_i vi 视为顶点,作者 e j e_j ej 视为边,得到了上面的图。图中黑色圆点表示顶点,虚线圈表示边。

解读:
作者 e 1 e_1 e1 写过两篇文章, v 1 v_1 v1 v 2 v_2 v2,那么顶点 v 1 v_1 v1 v 2 v_2 v2 有共同作者 e 1 e_1 e1,所以 e 1 e_1 e1 包含了顶点 v 1 v_1 v1 v 2 v_2 v2
文章 v 1 v_1 v1 是作者 e 1 e_1 e1 单独创作的,所以 v 1 v_1 v1 仅属于 e 1 e_1 e1,没有被其他边包含。与此同时,文章 v 2 v_2 v2 是作者 e 1 e_1 e1 e 3 e_3 e3 共同创作的,所以边 e 1 e_1 e1 包含了 v 2 v_2 v2 e 3 e_3 e3 也包含了 v 2 v_2 v2

3 超图相关性质

3.1 符号

那么前面说了那么多,到底超图是什么样的呢?接下来给出超图的数学定义。
首先给出一些必要的符号说明,见下表:

符号术语含义
G = ( V , E , w ) G=(V, E, w) G=(V,E,w)Hypergraph超图
V V VVertex set有限顶点集合(对象)
E E EHyperedge set有限(超)边集合
w w wWeight权重
v v vVertex顶点集合中的顶点, v ∈ V v \in V vV
e e eHyperedge(超)边集合中的(超)边, e ∈ E e \in E eE

3.2 定义

超图 表示为一个二元组,
G = ( V , E ) , G = (V, E), G=(V,E),
其中 V V V 是有限顶点集合, E E E 是有限超边集合。

有些时候,会用到 加权超图

加权超图,在超图的基础上,增加了超边的权重。
G = ( V , E , w ) , G = (V, E, w), G=(V,E,w),
其中, V V V E E E 的含义同上, w ( e ) w(e) w(e) 表示超边 e e e 的权重。值得注意的是, w ( e ) ≥ 0 w(e) \geq 0 w(e)0

补充解读:
V V V 是顶点集合,包含了所有的 v v v,用数学符号表示为
V = ⋃ i = 1 n v i V = \bigcup^n_{i=1} v_i V=i=1nvi 超边包含了多个顶点, e e e 是一条超边,因此 e e e 中包含了多个顶点 v v v,用数学符号表示为
e = ⋃ i = p q v i e = \bigcup^{q}_{i=p} v_i e=i=pqvi
由此有:对于任意超边 e ∈ E e \in E eE,存在
e ⊆ V e \subseteq V eV 关系成立。
引申出以下等式:
⋃ e ∈ E e = V \bigcup_{e\in E} e= V eEe=V

3.3 性质

关联

  • 当且仅当顶点 v ∈ V v \in V vV 是超边 e ∈ E e \in E eE 的一部分时,即满足 v ∈ e v \in e ve,称 v v v e e e 关联。

解读:如果边 e e e 包含顶点 v v v,则称 v v v e e e 关联。

顶点的度

  • 对于顶点 v ∈ V v \in V vV,其度(degree)定义为
    d ( v ) = ∑ e ∈ E ∣ v ∈ e w ( e ) . d(v) = \sum_{e \in E \mid v \in e} w(e). d(v)=eEvew(e).

解读:顶点的度,其实就是包含该顶点的所有边的权重之和。

超边的度

  • 对于超边 e ∈ E e \in E eE,其度(degree)定义为
    δ ( e ) = ∣ e ∣ . \delta(e) = \lvert e \rvert. δ(e)=e.

补充:对于任意集合 S S S ∣ S ∣ \lvert S \rvert S 表示 S S S 的基数。

解读:超边的度,其实就是该边包含的顶点个数。

关联矩阵
超图 G G G 除了用二元组或三元组外,还可以用关联矩阵来表示。
H i j = h ( v i , e j ) = { 1 , if  v i ∈ e j ; 0 , otherwise . H_{ij} = h(v_i, e_j) = \begin{cases} 1, & \text{if } v_i \in e_j; \\ 0, & \text{otherwise}. \end{cases} Hij=h(vi,ej)={1,0,if viej;otherwise.

H H H 是一个大小为 ∣ V ∣ × ∣ E ∣ \lvert V \rvert \times \lvert E \rvert V×E 的矩阵,它的第 i i i 行、第 j j j 列的元素 H i j H_{ij} Hij 取值如上式所示。 H H H 被称为 G G G 的关联矩阵(incidence matrix)。

解读:假设 V V V 中包含的顶点个数为 m m m E E E 中包含的超边条数为 n n n,即 ∣ V ∣ = m \lvert V \rvert =m V=m ∣ E ∣ = n \lvert E \rvert =n E=n,那么
H = [ H 11 H 12 ⋯ H 1 , n − 1 H 1 n H 21 H 22 ⋯ H 2 , n − 1 H 2 n ⋮ ⋮ ⋱ ⋮ ⋮ H m − 1 , 1 H m − 1 , 2 ⋯ H m − 1 , n − 1 H m − 1 , n H m 1 H m 2 ⋯ H m , n − 1 H m n ] m × n = ∣ V ∣ × ∣ E ∣ H = \begin{bmatrix} H_{11} & H_{12} & \cdots & H_{1,n-1} & H_{1n} \\ H_{21} & H_{22} & \cdots & H_{2,n-1} & H_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ H_{m-1,1}& H_{m-1, 2} & \cdots & H_{m-1, n-1} & H_{m-1, n} \\ H_{m1}& H_{m2} & \cdots & H_{m,n-1} & H_{mn} \end{bmatrix}_{m\times n=\lvert V \rvert \times \lvert E \rvert} H= H11H21Hm1,1Hm1H12H22Hm1,2Hm2H1,n1H2,n1Hm1,n1Hm,n1H1nH2nHm1,nHmn m×n=V×E

对角矩阵

  • 在关联矩阵 H H H 的基础上,我们可以对顶点的度进行重写:
    d ( v ) = ∑ e ∈ E w ( e ) h ( v , e ) . d(v) = \sum_{e \in E} w(e) h(v, e). d(v)=eEw(e)h(v,e).

解读:前面解读过,在超图中,顶点的度是包含该顶点的所有超边的权重和。那么超边 e e e,顶点 v v v e e e d ( v ) d(v) d(v) 的贡献是多少呢?一定是 w ( e ) w(e) w(e) 吗?不一定,对吧!!!
分情况讨论:

  • 如果 v ∈ e v \in e ve,那么 e e e d ( v ) d(v) d(v) 贡献为 w ( e ) w(e) w(e)
  • 如果 v ∉ e v \not \in e ve,那么 e e e d ( v ) d(v) d(v) 的贡献为 0 0 0

计算的时候,每次判断一下 v v v 是否属于 e e e,然后遍历所有的边 e ∈ E e \in E eE,累加满足条件的 w ( e ) w(e) w(e) 就能得到 d ( v ) d(v) d(v)
d ( v ) = ∑ e ∈ E ∣ v ∈ e w ( e ) . d(v) = \sum_{e \in E \mid v \in e} w(e). d(v)=eEvew(e).
每次都要判断检查一下,真的很麻烦!那么在计算的时候能不能不进行判断呢?
诶,还真的可以。这就要用到前面提到的关联矩阵了。如果 v ∈ e v \in e ve,则 h ( v , e ) = 1 h(v, e)=1 h(v,e)=1;否则 h ( v , e ) = 0 h(v, e)=0 h(v,e)=0
那么在计算的时候,只需要让 h ( v , e ) h(v, e) h(v,e) w ( e ) w(e) w(e) 相乘,得到
w ( e ) h ( v , e ) w(e) h(v, e) w(e)h(v,e)形式,就能自动地进行判断了。

  • 如果 v ∈ e v \in e ve,则 h ( v , e ) = 1 h(v, e)=1 h(v,e)=1,进一步 w ( e ) h ( v , e ) = w ( e ) w(e) h(v, e)=w(e) w(e)h(v,e)=w(e)
  • 如果 v ∉ e v \not \in e ve,则 h ( v , e ) = 0 h(v, e)=0 h(v,e)=0,进一步 w ( e ) h ( v , e ) = 0 w(e) h(v,e)=0 w(e)h(v,e)=0

这样就和前面判断的结果是一致的了。

超边的度进行重写:
δ ( e ) = ∑ v ∈ V h ( v , e ) . \delta(e) = \sum_{v \in V} h(v, e). δ(e)=vVh(v,e).

解读:前面解读过,在超图中,超边的度等于超边包含的顶点个数。回归到关联的定义,如果 v ∈ e v \in e ve,则 h ( v , e ) = 1 h(v, e)=1 h(v,e)=1;否则, h ( v , e ) = 0 h(v,e)=0 h(v,e)=0。如果 e e e 包含了 v v v,那么超边 e e e 的度 δ ( e ) \delta(e) δ(e) 就应该增加 1 1 1。这个增加的幅度,不正好等于 h ( v , e ) = 1 h(v,e)=1 h(v,e)=1 吗?如果 e e e 没有包含 v v v,那么 δ ( e ) \delta(e) δ(e) 不应该增加或者说增加的幅度为 0 0 0。这个值不正好等于 h ( v , e ) = 0 h(v, e)=0 h(v,e)=0 吗?巧了,不是?(手动狗头)

以顶点度组成的对角矩阵表示为 D v D_v Dv,以超边度组成的对角矩阵表示为 D e D_e De

解读:
D v = [ d ( v 1 ) 0 ⋯ 0 0 0 d ( v 2 ) ⋯ 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ d ( v m − 1 ) 0 0 0 ⋯ 0 d ( v m ) ] m × m = ∣ V ∣ × ∣ V ∣ , D_v = \begin{bmatrix} d(v_1)& 0 & \cdots & 0 & 0 \\ 0 & d(v_2) & \cdots & 0 &0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & d(v_{m-1}) & 0 \\ 0 & 0 & \cdots & 0 & d(v_m) \end{bmatrix}_{m \times m=\lvert V \rvert \times \lvert V \rvert}, Dv= d(v1)0000d(v2)0000d(vm1)0000d(vm) m×m=V×V,
D e = [ δ ( e 1 ) 0 ⋯ 0 0 0 δ ( e 2 ) ⋯ 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ δ ( e n − 1 ) 0 0 0 ⋯ 0 δ ( e n ) ] n × n = ∣ E ∣ × ∣ E ∣ . D_e = \begin{bmatrix} \delta(e_1)& 0 & \cdots & 0 & 0 \\ 0 & \delta(e_2) & \cdots & 0 &0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \delta(e_{n-1}) & 0 \\ 0 & 0 & \cdots & 0 & \delta(e_n) \end{bmatrix}_{n \times n=\lvert E \rvert \times \lvert E \rvert}. De= δ(e1)0000δ(e2)0000δ(en1)0000δ(en) n×n=E×E.

邻接矩阵
假设新增一个矩阵 W W W,表示超边的权重组成的对角矩阵。
结合前面提到的矩阵,可以得到超图 G G G 的邻接矩阵(adjacency matrix): A A A,定义为:
A = H W H T − D v , A = HWH^{T} - D_v, A=HWHTDv,
其中 H T H^{T} HT H H H 的转置。

解读:
W = [ w ( e 1 ) 0 ⋯ 0 0 0 w ( e 2 ) ⋯ 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ w ( e n − 1 ) 0 0 0 ⋯ 0 w ( e n ) ] n × n = ∣ E ∣ × ∣ E ∣ . W = \begin{bmatrix} w(e_1)& 0 & \cdots & 0 & 0 \\ 0 & w(e_2) & \cdots & 0 &0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & w(e_{n-1}) & 0 \\ 0 & 0 & \cdots & 0 & w(e_n) \end{bmatrix}_{n \times n=\lvert E \rvert \times \lvert E \rvert}. W= w(e1)0000w(e2)0000w(en1)0000w(en) n×n=E×E.

  • 首先
    H m × n W n × n = [ H 11 H 12 ⋯ H 1 , n − 1 H 1 n H 21 H 22 ⋯ H 2 , n − 1 H 2 n ⋮ ⋮ ⋱ ⋮ ⋮ H m − 1 , 1 H m − 1 , 2 ⋯ H m − 1 , n − 1 H m − 1 , n H m 1 H m 2 ⋯ H m , n − 1 H m n ] ⋅ [ w ( e 1 ) 0 ⋯ 0 0 0 w ( e 2 ) ⋯ 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ w ( e n − 1 ) 0 0 0 ⋯ 0 w ( e n ) ] = [ H 11 w ( e 1 ) H 12 w ( e 2 ) ⋯ H 1 , n − 1 w ( e n − 1 ) H 1 n w ( e n ) H 21 w ( e 1 ) H 22 w ( e 2 ) ⋯ H 2 , n − 1 w ( e n − 1 ) H 2 n w ( e n ) ⋮ ⋮ ⋱ ⋮ ⋮ H m − 1 , 1 w ( e 1 ) H m − 1 , 2 w ( e 2 ) ⋯ H m − 1 , n − 1 w ( e n − 1 ) H m − 1 , n w ( e n ) H m 1 w ( e 1 ) H m 2 w ( e 2 ) ⋯ H m , n − 1 w ( e n − 1 ) H m n w ( e n ) ] m × n \begin{aligned} H_{m\times n}W_{n \times n} &= \begin{bmatrix} H_{11} & H_{12} & \cdots & H_{1,n-1} & H_{1n} \\ H_{21} & H_{22} & \cdots & H_{2,n-1} & H_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ H_{m-1,1}& H_{m-1, 2} & \cdots & H_{m-1, n-1} & H_{m-1, n} \\ H_{m1}& H_{m2} & \cdots & H_{m,n-1} & H_{mn} \end{bmatrix} \cdot \begin{bmatrix} w(e_1)& 0 & \cdots & 0 & 0 \\ 0 & w(e_2) & \cdots & 0 &0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & w(e_{n-1}) & 0 \\ 0 & 0 & \cdots & 0 & w(e_n) \end{bmatrix} \\ &= \begin{bmatrix} H_{11} w(e_1)& H_{12} w(e_2) & \cdots & H_{1,n-1} w(e_{n-1}) & H_{1n} w(e_n) \\ H_{21} w(e_1) & H_{22} w(e_2) & \cdots & H_{2,n-1} w(e_{n-1}) & H_{2n} w(e_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ H_{m-1,1} w(e_1)& H_{m-1, 2} w(e_2) & \cdots & H_{m-1, n-1} w(e_{n-1}) & H_{m-1, n} w(e_n) \\ H_{m1} w(e_1) & H_{m2} w(e_2) & \cdots & H_{m,n-1} w(e_{n-1}) & H_{mn} w(e_n) \end{bmatrix}_{m \times n } \end{aligned} Hm×nWn×n= H11H21Hm1,1Hm1H12H22Hm1,2Hm2H1,n1H2,n1Hm1,n1Hm,n1H1nH2nHm1,nHmn w(e1)0000w(e2)0000w(en1)0000w(en) = H11w(e1)H21w(e1)Hm1,1w(e1)Hm1w(e1)H12w(e2)H22w(e2)Hm1,2w(e2)Hm2w(e2)H1,n1w(en1)H2,n1w(en1)Hm1,n1w(en1)Hm,n1w(en1)H1nw(en)H2nw(en)Hm1,nw(en)Hmnw(en) m×n
  • 接着
    [ H W ] m × n [ H T ] n × m = [ H 11 w ( e 1 ) H 12 w ( e 2 ) ⋯ H 1 , n − 1 w ( e n − 1 ) H 1 n w ( e n ) H 21 w ( e 1 ) H 22 w ( e 2 ) ⋯ H 2 , n − 1 w ( e n − 1 ) H 2 n w ( e n ) ⋮ ⋮ ⋱ ⋮ ⋮ H m − 1 , 1 w ( e 1 ) H m − 1 , 2 w ( e 2 ) ⋯ H m − 1 , n − 1 w ( e n − 1 ) H m − 1 , n w ( e n ) H m 1 w ( e 1 ) H m 2 w ( e 2 ) ⋯ H m , n − 1 w ( e n − 1 ) H m n w ( e n ) ] ⋅ [ H 11 H 21 ⋯ H m − 1 , 1 H m 1 H 12 H 22 ⋯ H m − 1 , 2 H m 2 ⋮ ⋮ ⋱ ⋮ ⋮ H 1 , n − 1 H 2 , n − 1 ⋯ H m − 1 , n − 1 H m , n − 1 H 1 n H 2 n ⋯ H m − 1 , n H m n ] = [ ⋮ ] m × m \begin{aligned} [HW]_{m\times n} [H^{T}]_{n \times m} &= \begin{bmatrix} H_{11} w(e_1)& H_{12} w(e_2) & \cdots & H_{1,n-1} w(e_{n-1}) & H_{1n} w(e_n) \\ H_{21} w(e_1) & H_{22} w(e_2) & \cdots & H_{2,n-1} w(e_{n-1}) & H_{2n} w(e_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ H_{m-1,1} w(e_1)& H_{m-1, 2} w(e_2) & \cdots & H_{m-1, n-1} w(e_{n-1}) & H_{m-1, n} w(e_n) \\ H_{m1} w(e_1) & H_{m2} w(e_2) & \cdots & H_{m,n-1} w(e_{n-1}) & H_{mn} w(e_n) \end{bmatrix} \cdot \begin{bmatrix} H_{11} & H_{21} & \cdots & H_{m-1,1} & H_{m1} \\ H_{12} & H_{22} & \cdots & H_{m-1, 2}& H_{m2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ H_{1,n-1} & H_{2,n-1} & \cdots & H_{m-1, n-1} & H_{m,n-1} \\ H_{1n} & H_{2n} & \cdots & H_{m-1, n} & H_{mn} \end{bmatrix} \\ &= \begin{bmatrix} \vdots \end{bmatrix}_{m \times m} \end{aligned} [HW]m×n[HT]n×m= H11w(e1)H21w(e1)Hm1,1w(e1)Hm1w(e1)H12w(e2)H22w(e2)Hm1,2w(e2)Hm2w(e2)H1,n1w(en1)H2,n1w(en1)Hm1,n1w(en1)Hm,n1w(en1)H1nw(en)H2nw(en)Hm1,nw(en)Hmnw(en) H11H12H1,n1H1nH21H22H2,n1H2nHm1,1Hm1,2Hm1,n1Hm1,nHm1Hm2Hm,n1Hmn =[]m×m

4 文献

  1. D. Zhou, J. Huang and B. Schölkopf. Learning with hypergraphs: Clustering, classification, and embedding. Advances in neural information processing systems, 19 (2006).
  • 11
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值