一个例子搞懂单纯形法大M法和两阶段法


1. 题目

目标函数:
min ⁡ z = 4 x 1 + x 2 \min z = 4x_1 + x_2 minz=4x1+x2

约束条件:
s.t. { 3 x 1 + x 2 = 3 4 x 1 + 3 x 2 ≥ 6 x 1 + 2 x 2 ≤ 4 x 1 , x 2 ≥ 0 \text{s.t.} \begin{cases} 3x_1 + x_2 = 3 \\ 4x_1 + 3x_2 \geq 6 \\ x_1 + 2x_2 \leq 4 \\ x_1, x_2 \geq 0 \end{cases} s.t.3x1+x2=34x1+3x26x1+2x24x1,x20

2. 添加松弛变量

min ⁡ z = 4 x 1 + x 2 + 0 x 3 + 0 x 4 \min z = 4x_1 + x_2 + 0x_3 + 0x_4 minz=4x1+x2+0x3+0x4

s.t. { 3 x 1 + x 2 = 3 4 x 1 + 3 x 2 − x 3 = 6 x 1 + 2 x 2 + x 4 = 4 x i ≥ 0 , i = 1 , 2 , … , 4 \text{s.t.} \begin{cases} 3x_1 + x_2 = 3 \\ 4x_1 + 3x_2 - x_3 = 6 \\ x_1 + 2x_2 + x_4 = 4 \\ x_i \geq 0, i = 1,2,\dots, 4 \end{cases} s.t.3x1+x2=34x1+3x2x3=6x1+2x2+x4=4xi0,i=1,2,,4

3. 大M法

max ⁡ − z = − 4 x 1 − x 2 + 0 x 3 + 0 x 4 − M x 5 − M x 6 \max -z = -4x_1 - x_2 + 0x_3 + 0x_4 - Mx_5 - Mx_6 maxz=4x1x2+0x3+0x4Mx5Mx6

s.t. { 3 x 1 + x 2 + x 5 = 3 4 x 1 + 3 x 2 − x 3 + x 6 = 6 x 1 + 2 x 2 + x 4 = 4 x i ≥ 0 , i = 1 , 2 , … , 6 \text{s.t.} \begin{cases} 3x_1 + x_2 + x_5 = 3 \\ 4x_1 + 3x_2 - x_3 + x_6 = 6 \\ x_1 + 2x_2 + x_4 = 4 \\ x_i \geq 0, i = 1,2,\dots, 6 \end{cases} s.t.3x1+x2+x5=34x1+3x2x3+x6=6x1+2x2+x4=4xi0,i=1,2,,6

单纯形表

. C C C.-4-100-M-M
C B C_B CB b b b x 1 ↓ x_1 \downarrow x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
-M ← x 5 \leftarrow x_5 x53[3]10010
-M x 6 x_6 x6643-1001
0 x 4 x_4 x44120100
. σ \sigma σ.7M-44M-1-M000

入基变量 x 1 x_1 x1,出基变量 x 5 x_5 x5

. C C C.-4-100-M-M
C B C_B CB b b b x 1 x_1 x1 x 2 ↓ x_2 \downarrow x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
-4 x 1 x_1 x111 1 3 \frac{1}{3} 3100 1 3 \frac{1}{3} 310
-M ← x 6 \leftarrow x_6 x620[ 5 3 \frac{5}{3} 35]-10- 4 3 \frac{4}{3} 341
0 x 4 x_4 x430 5 3 \frac{5}{3} 3501- 1 3 \frac{1}{3} 310
. σ \sigma σ.0 5 3 \frac{5}{3} 35M+ 1 3 \frac{1}{3} 31-M0- 7 3 \frac{7}{3} 37M+ 4 3 \frac{4}{3} 340

入基变量 x 2 x_2 x2,出基变量 x 6 x_6 x6

. C C C.-4-100-M-M
C B C_B CB b b b x 1 x_1 x1 x 2 x_2 x2 x 3 ↓ x_3 \downarrow x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
-4 x 1 x_1 x1 3 5 \frac{3}{5} 5310 1 5 \frac{1}{5} 510 1 15 \frac{1}{15} 151- 1 5 \frac{1}{5} 51
-1 x 2 x_2 x2 6 5 \frac{6}{5} 5601 − 3 5 -\frac{3}{5} 530 − 4 5 -\frac{4}{5} 54 3 5 \frac{3}{5} 53
0 ← x 4 \leftarrow x_4 x4100[1]11-1
. σ \sigma σ.00 1 5 \frac{1}{5} 510-M- 8 15 \frac{8}{15} 158-M- 1 5 \frac{1}{5} 51

入基变量 x 3 x_3 x3,出基变量 x 4 x_4 x4

. C C C.-4-100-M-M
C B C_B CB b b b x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
-4 x 1 x_1 x1 2 5 \frac{2}{5} 52100- 1 5 \frac{1}{5} 51- 2 15 \frac{2}{15} 1520
-1 x 2 x_2 x2 9 5 \frac{9}{5} 59010 3 5 \frac{3}{5} 53 − 1 5 -\frac{1}{5} 510
0 x 3 x_3 x3100111-1
. σ \sigma σ.000 − 1 5 -\frac{1}{5} 51-M- 11 15 \frac{11}{15} 1511-M

所有的 σ j ≤ 0 \sigma_j \leq 0 σj0,且所有的人工变量都是非基变量。
得到最优解:
x ∗ = ( 2 5 , 9 5 , 1 , 0 ) T , x^* = (\frac{2}{5}, \frac{9}{5}, 1, 0)^T, x=(52,59,1,0)T

z ∗ = 4 x 1 + x 2 = 4 ∗ 2 5 + 9 5 = 17 5 . z* = 4x_1 + x_2 = 4*\frac{2}{5} + \frac{9}{5} = \frac{17}{5}. z=4x1+x2=452+59=517.

4. 两阶段法

  • 第一阶段:
    min ⁡ w = 0 x 1 + 0 x 2 + 0 x 3 + 0 x 4 + x 5 + x 6 \min w = 0x_1 + 0x_2 + 0x_3 + 0x_4 + x_5 + x_6 minw=0x1+0x2+0x3+0x4+x5+x6

⇔ \Leftrightarrow

max ⁡ − w = 0 x 1 + 0 x 2 + 0 x 3 + 0 x 4 − x 5 − x 6 \max -w = 0x_1 + 0x_2 + 0x_3 + 0x_4 - x_5 - x_6 maxw=0x1+0x2+0x3+0x4x5x6

s.t. { 3 x 1 + x 2 + x 5 = 3 4 x 1 + 3 x 2 − x 3 + x 6 = 6 x 1 + 2 x 2 + x 4 = 4 x i ≥ 0 , i = 1 , 2 , … , 6 \text{s.t.} \begin{cases} 3x_1 + x_2 + x_5 = 3 \\ 4x_1 + 3x_2 - x_3 + x_6 = 6 \\ x_1 + 2x_2 + x_4 = 4 \\ x_i \geq 0, i = 1,2,\dots, 6 \end{cases} s.t.3x1+x2+x5=34x1+3x2x3+x6=6x1+2x2+x4=4xi0,i=1,2,,6

单纯形表

. C C C.0000-1-1
C B C_B CB b b b x 1 ↓ x_1 \downarrow x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
-1 ← x 5 \leftarrow x_5 x53[3]10010
-1 x 6 x_6 x6643-1001
0 x 4 x_4 x44120100
. σ \sigma σ.74-1000

入基变量 x 1 x_1 x1,出基变量 x 5 x_5 x5

. C C C.0000-1-1
C B C_B CB b b b x 1 x_1 x1 x 2 ↓ x_2 \downarrow x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
0 x 1 x_1 x111 1 3 \frac{1}{3} 3100 1 3 \frac{1}{3} 310
-1 ← x 6 \leftarrow x_6 x620[ 5 3 \frac{5}{3} 35]-10- 4 3 \frac{4}{3} 341
0 x 4 x_4 x430 5 3 \frac{5}{3} 3501- 1 3 \frac{1}{3} 310
. σ \sigma σ.0 5 3 \frac{5}{3} 35-10- 7 3 \frac{7}{3} 370

入基变量 x 2 x_2 x2,出基变量 x 6 x_6 x6

. C C C.0000-1-1
C B C_B CB b b b x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
0 x 1 x_1 x1 3 5 \frac{3}{5} 5310 1 5 \frac{1}{5} 510 1 15 \frac{1}{15} 151- 1 5 \frac{1}{5} 51
0 x 2 x_2 x2 6 5 \frac{6}{5} 5601 − 3 5 -\frac{3}{5} 530 − 4 5 -\frac{4}{5} 54 3 5 \frac{3}{5} 53
0 x 4 x_4 x4100111-1
. σ \sigma σ.000000

第一阶段结束。

  • 第二阶段

max ⁡ − z = − 4 x 1 − x 2 + 0 x 3 + 0 x 4 \max -z = -4x_1 - x_2 + 0x_3 + 0x_4 maxz=4x1x2+0x3+0x4

. C C C.-4-100
C B C_B CB b b b x 1 x_1 x1 x 2 x_2 x2 x 3 ↓ x_3 \downarrow x3 x 4 x_4 x4
-4 x 1 x_1 x1 3 5 \frac{3}{5} 5310 1 5 \frac{1}{5} 510
-1 x 2 x_2 x2 6 5 \frac{6}{5} 5601 − 3 5 -\frac{3}{5} 530
0 ← x 4 \leftarrow x_4 x4100[1]1
. σ \sigma σ.00 1 5 \frac{1}{5} 510

入基变量 x 3 x_3 x3,出基变量 x 4 x_4 x4

. C C C.-4-100
C B C_B CB b b b x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4
-4 x 1 x_1 x1 2 5 \frac{2}{5} 52100- 1 5 \frac{1}{5} 51
-1 x 2 x_2 x2 9 5 \frac{9}{5} 59010 3 5 \frac{3}{5} 53
0 x 3 x_3 x310011
. σ \sigma σ.000 − 1 5 -\frac{1}{5} 51

第二阶段结束。

最优解
x ∗ = ( 2 5 , 9 5 , 1 , 0 ) T , x^* = (\frac{2}{5}, \frac{9}{5}, 1, 0)^T, x=(52,59,1,0)T

z ∗ = 4 x 1 + x 2 = 4 ∗ 2 5 + 9 5 = 17 5 . z^* = 4x_1 + x_2 = 4*\frac{2}{5} + \frac{9}{5} = \frac{17}{5}. z=4x1+x2=452+59=517.

图片来自网络

  • 95
    点赞
  • 159
    收藏
    觉得还不错? 一键收藏
  • 18
    评论
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值