yolo4参数和模型的对应详细说明,一看就懂系列

这篇博客详细介绍了YOLOv4模型的参数设置,包括学习率(lr)、批处理尺寸(Batch_size)等,并提供了训练和测试模型的步骤。利用coco_classes.txt、voc_classes.txt等文件进行分类,通过predict.py和TS_detection.py进行预测和测试。此外,还提到了数据转换、CUDA的使用以及相关库的安装方法,如torch、torchvision和opencv-python。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自带的分类和模型的的对应关系
coco_classes.txt yolo4.weight.pth
voc_classes.txt yolo4_voc_weigths.pth
TS_classes.txt Epoch100-Total_Loss3.8129-Val_Loss5.0751.pth
自带predict.py调用nets/yolo4.py

train.py做训练模型使用
参数说明:
lr:学习率
Batch_size:批处理尺寸,几张图片更新一次参数
Init_Epoch:起始记书数
Freeze_Epoch:训练到多少次冻结一下
TS_detection.py 做模型的输出测试,调用yolo.py文件(其中包含模型参数)

yolo.py中关键参数:
anchors_path :目标匡的尺寸
classes_path:类别
model_image_size:模型尺寸固定,不能变动
confidence:置信度
iou:交并比

letterbox_image:暂时无用

通过标注生成的图片参数信息:
filename :图片名称
path:图片位置
width:宽度
height:高度
de

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鼾声鼾语

感谢您的支持鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值