线性代数学习笔记——矩阵(二)(针对期末与考研)

伴随矩阵

A = [ a i j ] A=[a_{ij}] A=[aij] n n n阶方阵,行列式 ∣ A ∣ |A| A的每个元素 a i j a_{ij} aij的代数余子式 A i j A_{ij} Aij所构成的如下的矩阵:
A ∗ = [ A 11 A 21 … a n 1 A 12 a 22 … a n 2 ⋮ ⋮ ⋮ A 1 n a 2 n … a n n ] A^* = \left[ \begin{matrix} A_{11}& A_{21}& \dots& a_{n1}\\ A_{12}& a_{22}& \dots& a_{n2}\\ \vdots& \vdots& & \vdots\\ A_{1n}& a_{2n}& \dots& a_{nn}\\ \end{matrix} \right] A=A11A12A1nA21a22a2nan1an2ann
称为矩阵 A A A伴随矩阵.

示例

A = [ a b c d ] A=\left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] A=[acbd],由行列式 ∣ a b c d ∣ \left|\begin{matrix} a& b\\ c& d\\ \end{matrix} \right| acbd得到代数余子式:
{ A 11 = d A 12 = − c A 21 = − b A 22 = a ⟹ A ∗ = [ A 11 A 21 A 12 A 22 ] = [ d − b − c a ] \left\{ \begin{array}{l} A_{11}=d\\ A_{12}=-c\\ A_{21}=-b\\ A_{22}=a\\ \end{array} \right. \Longrightarrow A^*=\left[ \begin{matrix} A_{11}& A_{21}\\ A_{12}& A_{22}\\ \end{matrix} \right]= \left[ \begin{matrix} d& -b\\ -c& a\\ \end{matrix} \right] A11=dA12=cA21=bA22=aA=[A11A12A21A22]=[dcba]

逆矩阵

A A A n n n阶矩阵,如果存在 n n n阶矩阵 B B B使得 A B = B A = E ( 单 位 矩 阵 ) AB=BA=E(单位矩阵) AB=BA=E()成立,则称 A A A可逆矩阵或非奇异矩阵 B B B A A A逆矩阵.

矩阵的初等变换

m × n m \times n m×n矩阵,下列三种变换:

  1. 用非零常数 k k k乘矩阵的某一行;
  2. 互换矩阵某两行(列)的位置;
  3. 把某行(列)的 k k k倍加至另一行(列);

称为矩阵的初等行(列)变换,且统称为矩阵的初等变换.

如果矩阵 A A A经过有限次初等变换变成矩阵 B B B,则称矩阵 A A A与矩阵 B B B等价,记作 A ≅ B A \cong B AB.

初等矩阵

单位矩阵经过一次初等变换所得到的矩阵.

行阶梯矩阵与行最简矩阵

行阶梯矩阵

满足以下条件:

  1. 如果矩阵中有零行,则零行在矩阵的底部.
  2. 每个非零行的主元(即该行最左边的第一个非零元),他们的列指标随着行指标的递增而严格增大.

称为行阶梯矩阵.
如:
[ 1 2 3 0 0 0 0 0 4 ] , [ 1 2 3 0 4 5 0 6 7 ] 都 不 是 行 阶 梯 矩 阵 . \left[\begin{matrix} 1& 2& 3\\ 0& 0& 0\\ 0& 0& 4\\ \end{matrix}\right],\left[\begin{matrix} 1& 2& 3\\ 0& 4& 5\\ 0& 6& 7\\ \end{matrix}\right]都不是行阶梯矩阵. 100200304,100246357.
[ 1 2 0 3 0 1 − 1 5 0 0 0 0 ] , [ 1 2 0 3 0 1 − 1 5 0 0 0 6 ] 都 是 行 阶 梯 矩 阵 . \left[\begin{matrix} 1& 2& 0& 3\\ 0& 1& -1& 5\\ 0& 0& 0& 0\\ \end{matrix}\right],\left[\begin{matrix} 1& 2& 0& 3\\ 0& 1& -1& 5\\ 0& 0& 0& 6\\ \end{matrix}\right]都是行阶梯矩阵. 100210010350,100210010356.

行最简矩阵

满足以下条件:

  1. 是行阶梯矩阵
  2. 非零行的主元都是1,且满足主元所在的列的其他元素都是0.

则称为行最简矩阵.
如:
[ 1 0 0 3 0 1 − 1 5 0 0 0 0 ] , [ 1 0 0 0 0 1 − 1 0 0 0 0 1 ] 都 是 行 阶 梯 矩 阵 . \left[\begin{matrix} 1& 0& 0& 3\\ 0& 1& -1& 5\\ 0& 0& 0& 0\\ \end{matrix}\right],\left[\begin{matrix} 1& 0& 0& 0\\ 0& 1& -1& 0\\ 0& 0& 0& 1\\ \end{matrix}\right]都是行阶梯矩阵. 100010010350,100010010001.

正交矩阵

n n n阶矩阵 A A A,如果满足 A A T = A T A = E AA^T=A^TA=E AAT=ATA=E,则称为正交矩阵.

A T = A − 1 , ∣ A ∣ 2 = 1 A^T = A^{-1},|A|^2=1 AT=A1,A2=1

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ACxz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值