- 博客(8)
- 收藏
- 关注
原创 高等代数:6 二次型⋅矩阵的合同
6 二次型⋅\cdot⋅矩阵的合同6.1 二次型及其标准形1、定义1:数域K上一个n元二次型是系数在K中的n个变量的二次齐次多项式,它的一般形式是f(x1,x2,…,xn)=a11x12+2a12x1x2+2a13x1x3+⋯+2a1nx1xn+a22x22+2a23x2x3+⋯+2a2nx2xn+⋯⋯⋯+annxn2(1)\begin{aligned}&f(x_1,x_2,\dots,x_n)=&a_{11}x_1^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\c
2022-04-22 16:54:59 1175
原创 高等代数:5 矩阵的相抵与相似
5 矩阵的相抵与相似5.1 等价关系与集合的划分1、设S,M是两个集合,则集合 {(a,b)∣a∈S,b∈W}\{(a,b)|a \in S,b \in W\}{(a,b)∣a∈S,b∈W} 称为S与M的笛卡儿积,记作:S×MS \times MS×M。2、定义1:设S是一个非空集合,我们把S×SS \times SS×S的一个子集W叫做S上的一个二元关系。如果a,b)∈Wa,b)\in Wa,b)∈W,那么称a与b有W关系;反之没有W关系。当a与b有W关系时,记作aWb,或a∼ba\sim ba
2022-04-19 22:19:03 3187
原创 高等代数:4 矩阵的运算
4 矩阵的运算4.1 矩阵的运算1、数域K上两个矩阵称为相等,如果它们的行数相等,列数也相等,并且它们的所有元素对应相等。2、定义1:设A=(aij),B=(bij)A=(a_{ij}),B=(b_{ij})A=(aij),B=(bij)都是数域K上s×ns \times ns×n矩阵,令C=(aij+bij)s×n,C=(a_{ij}+b_{ij})_{s \times n},C=(aij+bij)s×n,则称矩阵C是矩阵A与B的和,记作C=A+BC=A+BC=A+B。3、定义2
2022-04-15 16:17:53 1244
原创 高等代数:3 线性方程组的解集的结构
3 线性方程组的解集的结构3.1 n维向量空间KnK^nKn1、定义1:数域K上所有n元有序数组组成的集合KnK^{n}Kn,连同定义在它上面的加法运算和数量乘法运算,以及满足的8条运算法则一起,称为数域K上的一个n维向量空间。KnK^{n}Kn的元素称为n维向量;设向量α=(a1,a2,…,an)\alpha =(a_1,a_2,\dots,a_n)α=(a1,a2,…,an),称aia_iai是α\alphaα的第iii个分量。取定一个数域K,设n是任意给定的一个正整数。令Kn={(a1
2022-04-11 00:44:58 1269
原创 高等代数 :2 行列式
2 行列式2.1 n元排列1、n个不同的自然数的一个全排列称为一个n元排列。2、顺序、逆序、逆序数:τ(abcd…)(读音:tao)、奇排列、偶排列、对换(a,b)3、定理1:对换改变n元排列的奇偶性。4、定理2:任一n元排列与顺序排列123……n可以经过一系类对换互变,且所做对换次数与这个n元排列有相同的奇偶性。2.2 n阶行列式的定义1、定义1:n阶行列式是n!项的代数和,其中每一项都是位于不同行、不同列的n个元素的乘积,把这n个元素以行指标为自然序号排好位置,当列指标构成的排列是偶排列时
2022-04-05 00:55:51 1805
原创 高等代数 :1 线性方程组的解法
1 线性方程组的解法1.1 解线性方程组的矩阵消元法1、线性方程组:左端为未知量x的一次齐次式,右端是常数。关键词:系数、常数项、n元线性方程组、解集2、线性方程组的初等变换:1)把一个方程的倍数加到另一个方程上;2)互换两个方程位置;3)用一个非零数乘其中一个方程3、关键词:阶梯型方程组、简化阶梯型方程组、增广矩阵、系数矩阵、零矩阵、方阵、m级矩阵(方阵)、矩阵的初等变换4、阶梯型矩阵:1)零行在下方(如果有零行的话);2)非零行从左边起第一个不为0的元素(称为主元),它们的列指标随行指标的递增
2022-03-22 22:25:00 3511
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人