
线性代数
线性代数
pyorz
python 爱好者
展开
-
线性代数-05-二次型
二次型定义 二次型化标准型(配方法) 二次型化标准型(初等变换法、正交替换法)原创 2020-10-17 09:52:49 · 137 阅读 · 0 评论 -
线性代数-04-线性方程组
线性方程组 有解判定 系数矩阵 => 增广矩阵 r(A)=r(A hat) 则有解,且r(A)=N 唯一解,<N无穷解 r(A)!=r(A hat) 无解 齐次方程组的解 一定有解,至少有零解(上面两个秩相等且等于n时) r(A) < n时有非零解 方程个数 小于 未知量个数,那么一定有非零解 方程组解的结构 齐次 唯一解 无穷解 无解 非齐次方程组求解 ...原创 2020-10-17 09:51:17 · 325 阅读 · 0 评论 -
线性代数-03-向量
向量间的线性关系 线性相关 存在不全为0的解 线性无关 只有全为0的解 线性无关的向量组,它的接长向量组也线性无关 线性相关的向量组,它的截短向量组也线性相关 定理 n个n维向量,D!=0 <=> 无关,D=0 <=>相关 向量组的秩 极大线性无关组 向量组中,无关向量数最多的一组(可以有多组) 向量组的秩:极大无关组含有的向量个数 矩阵的行秩和列秩 定理:矩阵的 行秩=列秩=r(A) ...原创 2020-10-17 09:49:47 · 2774 阅读 · 0 评论 -
线性代数-02-矩阵
行列式:行数 = 列数 矩阵没这个要求 矩阵用不做分母 矩阵运算 加法 减法 数乘法(注意与行列式数乘的区别) 乘法:两个矩阵形状有要求 幂运算 A^0 = E 转置 特殊矩阵 diag(1,2,3,4) = (1 2 3 4) diag 左乘、右乘 对称矩阵 A^T = A 反对称矩阵 逆矩阵 未必所有方阵均可逆,若可逆必唯一 A x B = B x A = E 方阵行列式的性质 伴随矩阵 AA = AA = |A|E 分块矩阵 初等变换 对行列式的影响 变换为标准型 等价性(A经过初等变换得到B) 初等原创 2020-10-17 09:49:22 · 758 阅读 · 0 评论 -
线性代数-01-行列式相关知识
二阶行列式 三阶行列式 n 阶行列式 N(54123) = 4+3+0 = 7 C格码 ∑ 下三角 上三角 主对角线 次对角线 行列式的性质 按行(列)展开 -> 降阶 余子式 代数余子式 拉普拉斯 k阶余子式 行列式相乘 范德蒙德行列式 克莱姆法则 - 解方程组 常规方程 齐次方程,如果D不等于0,则只有零解;如果有非零解,那么D=0 ...原创 2020-10-17 09:48:32 · 208 阅读 · 0 评论