动态规划-03-线性动态规划

一、简介

动态规划主要任务,确定状态方程(fn 和 fn-1、fn-2),和边界条件(n=1,2),联想高中递推问题。
线性动态规划的主要特点是状态的推导是按照问题规模 i 从小到大依次推过去的,较大规模的问题的解依赖较小规模的问题的解。

这里问题规模为 i 的含义是考虑前 i 个元素 [0…i] 时问题的解。

状态定义:
dp[n] = [0…n] 上问题的解
状态转移:
dp[n] = f(dp[n-1], …, dp[0])
从以上状态定义和状态转移可以看出,大规模问题的状态只与较小规模的问题有关,而问题规模完全用一个变量 i 表示,i 的大小表示了问题规模的大小,因此从小到大推 i 直至推到 n,就得到了大规模问题的解,这就是线性动态规划的过程。

按照问题的输入格式,线性动态规划解决的问题主要是单串,双串,矩阵上的问题,因为在单串,双串,矩阵上问题规模可以完全用位置表示,并且位置的大小就是问题规模的大小。因此从前往后推位置就相当于从小到大推问题规模。

线性动态规划是动态规划中最基本的一类。问题的形式、dp 状态和方程的设计、以及与其它算法的结合上面变化很多。按照 dp 方程中各个维度的含义,可以大致总结出几个主流的问题类型,见后面的小节。除此之外还有很多没有总结进来的变种问题,小众问题,和困难问题,这些问题的解法更多地需要结合自己的做题经验去积累,除此之外,常见的,主流的问题和解法都可以总结成下面的四个小类别。

单串

单串 dp[i] 线性动态规划最简单的一类问题,输入是一个串,主要有两种方式:

  1. 依赖比 i 小的 O(1) 个子问题
    dp[n]只与常数个小规模子问题有关,状态的推导过程 dp[i] = f(dp[i - 1], dp[i - 2], ...)
  2. 依赖比 i 小的 O(n) 个子问题
    dp[n]与此前的更小规模的所有子问题 dp[n - 1], dp[n - 2], ..., dp[1]都可能有关系。
    状态推导过程dp[i] = f(dp[i - 1], dp[i - 2], ..., dp[0])

此外,dp有多重形式,dp[i], 或者dp[i][j]、dp[i][j][k]

最大子序和

在这里插入图片描述

  1. 问题分解:用 f ( i ) {f(i)} f(i)代表以第 ii 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:
    max ⁡ 0 ≤ i ≤ n − 1 { f ( i ) } \max _{0 \leq i \leq n-1}\{f(i)\} 0in1max{f(i)}
  2. 状态转移方程:
    dp[i] = max(nums[i], nums[i] + dp[i - 1])
    或者
    dp[i] = nums[i] + max(dp[i - 1], 0)
  3. 合并子问题求得最终解:
    max_sum = max(dp)
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        dp = [0]*n
        dp[0]=nums[0]

        for i in range(1,n):
            dp[i] = nums[i] + max(dp[i - 1], 0)
            #dp[i] = max(nums[i], nums[i] + dp[i - 1])

        return max(dp)

最长上升子序列(LIS算法,Longes Increasing Subsequence)

在这里插入图片描述

  1. 问题分解:求f(i),则需要求f(i-1)中最长子序列(满足子序列最大值小于nums[i])+1
  2. 状态转移方程:
for j in range(i): #这就是依赖比 i 小的 O(n) 个子问题,即dp[i]与dp[0~i-1]都有关
   if nums[i]>nums[j]:# 满足子序列+nums[i]仍然能构成递增序列
       dp[i] = max(dp[i],dp[j] + 1) # 经历了循环,dp[i]一直在变化
  1. 从子问题最优解获取最终最优解:max(dp)
class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        if not nums:return 0
        n = len(nums)
        dp = [1]*n #考虑只含nums[i]的序列,这个序列长度为1

        for i in range(1,n):
            for j in range(i): #这就是依赖比 i 小的 O(n) 个子问题,即dp[i]与dp[0~i-1]都有关
                if nums[i]>nums[j]:
                    dp[i] = max(dp[i],dp[j] + 1) # 经历了循环,dp[i]一直在变化
        return max(dp)

最长递增子序列的个数

在这里插入图片描述

class Solution:
    def findNumberOfLIS(self, nums: List[int]) -> int:
        if nums ==[]:
            return(0)
        n = len(nums)
        length = [1]*n
        counter = [1]*n

        for i in range(1,n):
            for j in range(i):
                if nums[j]<nums[i]:
                    if length[j]+1 > length[i]:# 代表第一次遇到最长子序列
                        length[i] = 1+length[j]
                        counter[i] = counter[j]
                    elif length[j]+1 == length[i]:# 代表已经遇到过最长子序列
                        counter[i] = counter[i]+counter[j]
        tmp = max(length)
        res = sum([counter[i] for i in range(n) if length[i]==tmp])
        return(res)

俄罗斯套娃信封

先对宽度 w 进行升序排序,如果遇到 w 相同的情况,则按照高度 h 降序排序。之后把所有的 h 作为一个数组,在这个数组上计算 LIS 的长度就是答案。

画个图理解一下,先对这些数对进行排序:

在这里插入图片描述

然后在 h 上寻找最长递增子序列:

在这里插入图片描述

这个子序列就是最优的嵌套方案。

这个解法的关键在于,对于宽度 w 相同的数对,要对其高度 h 进行降序排序。因为两个宽度相同的信封不能相互包含的,逆序排序保证在 w 相同的数对中最多只选取一个。

from bisect import bisect_left

class Solution:
    def maxEnvelopes(self, arr: List[List[int]]) -> int:
        # sort increasing in first dimension and decreasing on second
        arr.sort(key=lambda x: (x[0], -x[1]))

        def lis(nums):
            dp = []
            for i in range(len(nums)):
                idx = bisect_left(dp, nums[i])
                if idx == len(dp):
                    dp.append(nums[i])
                else:
                    dp[idx] = nums[i]
            return len(dp)
        # extract the second dimension and run the LIS
        return lis([i[1] for i in arr])

乘积最大子数组

在这里插入图片描述

我们只要记录前i的最小值, 和最大值, 那么 dp[i] = max(nums[i] * pre_max, nums[i] * pre_min, nums[i]), 这里0 不需要单独考虑, 因为当相乘不管最大值和最小值,都会置0

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        if not nums: return 
        res = nums[0]
        pre_max = nums[0]
        pre_min = nums[0]
        for num in nums[1:]:
            cur_max = max(pre_max * num, pre_min * num, num)
            cur_min = min(pre_max * num, pre_min * num, num)
            res = max(res, cur_max)
            pre_max = cur_max
            pre_min = cur_min
        return res

按摩师(使用多个dp表)

在这里插入图片描述

class Solution:
    def massage(self, nums: List[int]) -> int:
        n = len(nums)
        if n == 0:
            return 0

        dp0, dp1 = 0, nums[0]
        for i in range(1, n):
            tdp0 = max(dp0, dp1)   # 计算 dp[i][0]
            tdp1 = dp0 + nums[i]   # 计算 dp[i][1]
            dp0, dp1 = tdp0, tdp1
        
        return max(dp0, dp1)

使用最小花费爬楼梯(倒着动态规划)


计算花费 f[i] 有一个清楚的递归关系:f[i] = cost[i] + min(f[i+1], f[i+2])。我们可以使用动态规划来实现。

  • 当我们要计算 f[i] 时,要先计算出 f[i+1] 和 f[i+2]。所以我们应该从后往前计算 f。
  • 在第 i 步,让 f1,f2 为 f[i+1],f[i+2] 的旧值,并将其更新为f[i],f[i+1] 的新值。当我们从后遍历 i 时,我们会保持这些更新。在最后答案是 min(f1, f2)。
class Solution(object):
    def minCostClimbingStairs(self, cost):
        f1 = f2 = 0
        for x in reversed(cost):
            f1, f2 = x + min(f1, f2), f1
        return min(f1, f2)

难-环形子组数的最大和

难-最大子矩阵

难-矩形区域不超过 K 的最大数值和

双串

有两个输入从串,长度分别为 m, n,此时子问题需要用 i, j 两个变量表示,分别代表第一个串和第二个串考虑的位置 dp[i][j]:=第一串考虑[0…i],第二串考虑[0…j]时,原问题的解。这种形式的线性 DP 的代码常见写法

for i = 1..m
    for j = 1..n
        dp[i][j] = f(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])

时间复杂度 O(mn)O(mn),空间复杂度 O(mn)O(mn)

最长公共子序列(LCS算法,Longest Common Subsequence)

图解

典型的二维动态规划

矩阵

线性动态规划中矩阵 dp[i][j] 的问题,状态的推导方向以及推导公式与双串 dp[i][j] 相同,但是物理意义不一样,且求 dp[i][j] 时所需的子问题的变化相对更多。

最小路径和

无串

线性动态规划有一类问题是没有显式的数组或字符串的。但在计算中依然可以分成若干子问题,且有动态规划的三条性质。因此也可以用动态规划来解。

  • 只有两个键的键盘
  • 丑数 II
  • 完全平方数
  • 整数拆分

二、总结

动态规划中最重要的三个概念:最有子结构,重复子问题,无后效性。

  • 最优子结构:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构。
  • 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
  • 重复子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

线性动态规划是动态规划中变化最多的一类。

首先线性动态规划针对的问题是最常见的数组,字符串,矩阵等,这三种数据结构本身就是线性的,因此出现这些类型的输入的时候,如果要用到动态规划,首先考虑线性动态规划就很合理了,因此很多问题不论最后正解是不是线性动态规划,都会首先想一下线性动态规划是否可行。

单个数组或字符串上设计一维状态,两个数组或字符串上设计两维状态,以及矩阵上设计两维状态等等,同时以上三种情况的状态设计都有可能再加上额外的指标的状态,就是前面例题中的 k,这里面变化就很多了,比如有的题目在 k 这一维上要使用二分,贪心的策略,有的题目需要 DP 状态与数据结构配合来解决问题。

除此之外还有一类问题没有显式的数组,字符串,但是在求解的时候依然满足前面提到的动态规划三条基本概念,可以用动态规划求解,这种问题通常也是线性动态规划。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值