24、故障安全逻辑设计实验全解析

故障安全逻辑设计实验全解析

1. 基本实验

基本实验主要分为软件在环(SIL)仿真和硬件在环(HIL)仿真两部分。

1.1 SIL 仿真
  • 参数初始化 :运行 “e8\e8.1\Init_control.m” 文件初始化参数,随后 “AttitudeControl_Sim” 的 Simulink 文件会自动打开。基本实验的扩展有限状态机(EFSM)中,各转换条件如下:
    • C1:M I E1 = 1,表示成功解锁操作,即远程飞行员解锁多旋翼飞行器时此条件为真。
    • C2:M I E2 = 2,意味着从手动飞行模式切换到返回发射点(RTL)模式。
    • C3、C5:M I E2 = 1,分别表示从 RTL 模式和自动降落模式切换到手动飞行模式。
    • C4:M I E2 = 3,代表从手动飞行模式切换到自动降落模式。
  • RTL 仿真 :通过改变 “ch5” 的值来切换模式,“ch5” 的 PWM 值小于 1400 时,M I E2 = 1;在 1400 - 1600 之间时,M I E2 = 2;大于 1600 时,M I E2 = 3。前 10 秒,“ch5” 通道输入值为 1200,对应手动飞行模式;10 秒后,值设为 1500,对应 RTL 模式。此时,飞行器进入 RTL 模式,高度不变,水平位置逐渐归 0。
  • 自动降落仿真 :前 10 秒,“ch5” 输入值为 1200,处于手动飞
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值