RAG优化技巧 | 7大挑战与解決方式 | 提高你的LLM :上篇

在当今快速发展的人工智能领域,大型语言模型(LLM)已经成为无处不在的技术,它们不仅改变了我们与机器交流的方式,还在各行各业中发挥着革命性的影响。

在这里插入图片描述

然而,尽管LLM + RAG的能力已经让人惊叹,但我们在使用RAG优化LLM的过程中,还是会遇到许多挑战和困难,包括但不限于检索器返回不准确或不相关的数据,并且基于错误或过时信息生成答案。因此本文旨在提出RAG常见的7大挑战,并附带各自相应的优化方案,期望能够帮助我们改善RAG。

下图展示了RAG系统的两个主要流程:检索和查询;红色方框代表可能会遇到的挑战点,主要有7项:

  1. \1. Missing Content: 缺失內容
  2. \2. Missed Top Ranked: 错误排序內容,导致正确答案沒有被成功 Retrieve
  3. \3. Not in Context: 上限文限制,导致正确答案沒有被采用
  4. \4. Wrong Format: 格式错误
  5. \5. Incomplete: 回答不全面
  6. \6. Not Extracted: 未能检索信息
  7. \7. Incorrect Specificity: 不合适的详细回答

由于篇幅比较长,所以这篇文章我们先谈前 3 项:

在这里插入图片描述

这些挑战不仅关系到系统的可用性和准确性,还直接影响到用户对技术的信任度。为了解决这些问题,以下是针对每个挑战的优化方案:

缺失内容(Missing Content)

RAG 系统面对的问题无法从现有文件中得到答案时,就会出现这种情况。在最佳情况下,我们希望 RAG 系统直接回答「我不知道」。然而,实际上RAG 系统常常会编造或错误回答问题。

针对这个问题,目前有两大解决策略:

1. 数据清理

俗话说"吃什么、吐什么"。原始数据质量对信息处理系统的准确性至关重要,若输入数据错误或矛盾,或者预处理步骤不当,则无论检索增强生成(RAG)系统有多先进,也无法从混乱数据中提取有价值信息。这意味着我们必须在数据源选择、数据清洗、预处理等环节投入资源和技术,以确保输入数据尽可能准确和一致。这个策略不仅适用于本文讨论的问题,也适用于所有数据处理流程中,数据质量始终是关键。

2. prompt 工程

在知识库缺乏相关信息、导致系统可能给出看似合理但实际上错误答案的情况下,使用提示工程是一个非常有帮助的解决方式。例如通过设定提示:“如果你对答案不确定,就直接告诉我你不知道”,如此可以鼓励模型采取更谨慎和诚实的回应态度,从而避免误导用户。虽然不能保证系统回答的绝对准确性,但通过这样的提示, 确实能提高回答品质。

未命中排名靠前的内容(Missed Top Ranked)

这个挑战主要在于“答案在文件中,但由于排名靠前而未能提供给用户”。理论上,检索系统会为每个文档分配一个排名,此排名将决定其在后续处理中的使用程度。然而,在实际操作中,受限于性能和资源,通常只有排名最高的前 K 个文档会被选取并展示给用户。这里的 K 是基于性能考虑的参数。

针对该问题,存在两种解决方式:

1. 调整参数以优化搜索效果

该部分提出了两个方面调整以增加 RAG 效率和准确性:chunk_size

如果要直接在 langchain 调整块大小,请使用以下代码:

在这里插入图片描述

k 值涉及到检索器应该返回多少个答案,我们可以选择返回更多的答案,以确保正确答案不会被 LLM 忽略:

在这里插入图片描述

2. 优化检索文档的排序

在将检索到的文件送到LLM前,先对文件进行最佳化排序,能大幅提升RAG系统的效能,因为初始排序无法反映件与查询的真实相关性。这系列的论文可以看Liu et al.2023,论文中指出,将最相似的文档放在开头或结尾时,效能通常最高,因为模型容易迷失在中间。

langchain中,我们可以使用langchain原生的Long-Context ReorderCohere Reranker来实现,请参考官方文件。

2.1 Long-Context Reorder

在这里插入图片描述

2.2 Cohere Reranker
在这里插入图片描述

Not in Context(上下文限制)

论文有提到:「答案所在的文档虽从数据库中检索出来,但并未包含在生成答案的上下文中。」这种情况通常发生在返回的文档太多,需透过一个整合过程来提取答案的情境。为了解决这个问题,扩大上下文的处理范围是一种方式,此外也建议可以尝试以下方法:

1.调整检索策略

Langchain中提供许多检索的方法,确保我们在RAG中能拿到最符合问题的文件,详细的列表可以参考官网,其中包含:

  1. \1. Vectorstore
  2. \2. ParentDocument
  3. \3. Multi Vector
  4. \4. Self Query
  5. \5. Contextual Compression
  6. \6. Time-Weighted Vectorstore
  7. \7. Multi-Query Retriever
  8. \8. Ensemble
  9. \9. Long-Context Reorder

这些策略为我们提供了一种灵活多样的方式,能够根据不同的检索需求和应用场景进行调整,以此提升检索过程中的准确性和效率。

2. 微调 embedding

Fine-tuning 嵌入模型针对特定任务是提高检索准确性的有效方法。如果我们的 embedding model 是开源的,可以使用 LlamaIndex 功能进行实现。与 Langchian 相比,LlamaIndex 是为了检索数据而优化的软件包,在这方面提供了详细教程,而 Langchian 则没有相应功能。

以下示范如何设置微调框架、执行微调操作并获取经过微调的模型,也可参考官方文档[1]。

在这里插入图片描述

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

  • 10
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值