通义千问2.5-Max + Roo Code Cline 插件:实现 AI Agents 自动编程。基准测试超过 DeepSeek v3。

前言

首先得出结论:除了 Cursor 工具,我们还有许多其他选择。例如,今天提到的 Roo Code 作为一个 AI Agents 自动编码的工具,是一个 VSCode 插件,并在千问大模型 qwen-max-2025-01-25 发布时使用。目前,猫哥的主流选择仍然是:Cursor 进行代码生成,配合 GitHub Copilot 提供代码提示。同时,我们也在研究使用 Roo Code、Cline 以及各大模型平台。

通义千问2.5-Max, Roo Code Cline插件, AI自动编程, 基准测试, DeepSeek v3, AI编程性能, 代码生成

参考

基准参数对比

据阿里巴巴称,“Qwen 2.5-Max在Arena-Hard、LiveBench、LiveCodeBench和GPQA-Diamond等基准测试中优于DeepSeek V3,同时在MMLU-Pro等其他评估中也表现出竞争力。”

在这里插入图片描述

Arena-Hard:通常指一种难度较高的测试环境或基准,用于评估模型在复杂任务中的表现。

LiveBench:可能指一种实时基准测试,旨在评估模型在实际应用中的表现,尤其是在动态或变化环境中。

LiveCodeBench:类似于LiveBench,但可能更专注于代码的实时执行和评估,特别是在软件开发和代码优化方面。

GPQA-Diamond:可能指某种特定的基准测试或评估指标,特别是在自然语言处理或问答系统中,GPQA通常与生成式问答(Generative Question Answering)相关,"Diamond"可能是该基准的一个特定版本或变体。

步骤

第一步:开通阿里云百炼 api keys

开通 api keys

bailian.console.aliyun.com/?apiKey=1#/…

在这里插入图片描述

测试模型是否可用

curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
    "model": "qwen-max-2025-01-25",
    "messages": [
        {
            "role": "system",
            "content": "You are a helpful assistant."
        },
        {
            "role": "user", 
            "content": "你是谁?"
        }
    ]
}'

替换其中的 api key 和 model 模型名称

模型名称如下:

help.aliyun.com/zh/model-st…

在这里插入图片描述

第二步:安装 Roo Code 插件
搜索 Roo Code 并安装

在这里插入图片描述

配置千问访问

在这里插入图片描述

API Provider :OpenAI Compatible

Base URL: dashscope.aliyuncs.com/compatible-…

Model: qwen-max-2025-01-25

启用流方式 Enable Streaming

.clinerules 项目配置文档
我的主语言是简体中文,所以请用简体中文回答我,与我交流。

您是一名高级 Dart 程序员,具有 Flutter 框架的经验,并偏好干净的编程和设计模式。

生成符合基本原则和命名规范的代码、修正和重构。

## Dart 一般指南

### 基本原则

- 所有代码和文档使用中文。
- 始终声明每个变量和函数的类型(参数和返回值)。
  - 避免使用任何类型(any)。
  - 创建必要的类型。
- 不要在函数内部留空行。
- 每个文件只导出一个。

### 命名规范

- 类使用 PascalCase。
- 变量、函数和方法使用 camelCase。
- 文件和目录名称使用 underscores_case。
- 环境变量使用 UPPERCASE。
  - 避免魔法数字,定义常量。
- 每个函数以动词开头。
- 布尔变量使用动词,例如:isLoading、hasError、canDelete 等。
- 使用完整单词而非缩写,并确保拼写正确。
  - 除了标准缩写,如 API、URL 等。
  - 除了众所周知的缩写:
    - i、j 用于循环
    - err 用于错误
    - ctx 用于上下文
    - req、res、next 用于中间件函数参数

### 函数

- 在此上下文中,函数的定义同样适用于方法。
- 编写短小的函数,功能单一。指令数少于 20 条。
- 用动词和其他内容命名函数。
  - 如果返回布尔值,使用 isX 或 hasX、canX 等。
  - 如果不返回任何内容,使用 executeX 或 saveX 等。
- 避免嵌套块:
  - 提前检查并返回。
  - 提取到工具函数中。
- 使用高阶函数(map、filter、reduce 等)来避免函数嵌套。
  - 对于简单函数(少于 3 条指令)使用箭头函数。
  - 对于非简单函数使用具名函数。
- 使用默认参数值,而不是检查 null 或 undefined。
- 通过 RO-RO 减少函数参数:
  - 使用对象传递多个参数。
  - 使用对象返回结果。
  - 为输入参数和输出声明必要的类型。
- 使用单一的抽象级别。

### 数据

- 不要滥用原始类型,将数据封装在复合类型中。
- 避免在函数中进行数据验证,使用具有内部验证的类。
- 优先使用不可变数据。
  - 对于不变的数据使用 readonly。
  - 对于不变的字面量使用 const。

### 类

- 遵循 SOLID 原则。
- 优先使用组合而非继承。
- 声明接口以定义契约。
- 编写小型类,功能单一。
  - 指令数少于 200。
  - 公共方法少于 10 个。
  - 属性少于 10 个。

### 异常

- 使用异常处理您不期望的错误。
- 如果捕获异常,应该是为了:
  - 修复预期的问题。
  - 添加上下文。
  - 否则,使用全局处理程序。

## 特定于 Flutter

### 基本原则

- 使用干净的架构。
  - 如果需要将代码组织为模块,请参见模块。
  - 如果需要将代码组织为控制器,请参见控制器。
  - 如果需要将代码组织为服务,请参见服务。
  - 如果需要将代码组织为存储库,请参见存储库。
  - 如果需要将代码组织为实体,请参见实体。
- 使用存储库模式进行数据持久化。
  - 如果需要缓存数据,请参见缓存。
- 使用控制器模式与 GetX 处理业务逻辑。
- 使用 GetX 管理状态。
  - 如果需要保持状态,请参见 keepAlive。
- 使用 GetX 管理 UI 状态。
- 控制器始终接受方法作为输入,并更新影响 UI 的 UI 状态。
- 使用扩展管理可重用代码。
- 使用 ThemeData 管理主题。
- 使用 AppLocalizations 管理翻译。
- 使用常量管理常量值。
- 当小部件树变得过深时,可能导致更长的构建时间和更高的内存使用。Flutter 需要遍历整个树来呈现 UI,因此更平坦的结构提高了效率。
- 更平坦的小部件结构使理解和修改代码更容易。可重用组件也促进了更好的代码组织。
- 避免在 Flutter 中深度嵌套小部件。深度嵌套的小部件可能会对 Flutter 应用的可读性、可维护性和性能产生负面影响。旨在将复杂的小部件树拆分为更小的可重用组件。这不仅使您的代码更清晰,还通过减少构建复杂性来增强性能。
- 深度嵌套的小部件可能使状态管理变得更加困难。通过保持树的扁平化,更容易管理状态并在小部件之间传递数据。
- 将大型小部件拆分为更小、更专注的小部件。
- 尽可能使用 const 构造函数以减少重建次数。

### 性能优化

- 在可能的情况下使用 const 组件以优化重建。
- 实现列表视图优化(例如:ListView.builder)。

### UI 和样式

- 使用 Flutter 内置组件并创建自定义组件。
- 使用 LayoutBuilder 或 MediaQuery 实现响应式设计。
- 使用主题以保持应用一致的样式。

### 参考

- 界面视图库 [ducafe_ui_core packages](https://pub.dev/packages/ducafe_ui_core)

### 代码生成

- 使用 build_runner 从注解生成代码(Freezed、Riverpod、JSON 序列化)。
- 在修改注解类后运行 'flutter pub run build_runner build --delete-conflicting-outputs'。

### 文档

- 文档应复杂逻辑和非显而易见的代码决策。
- 遵循官方 Flutter 文档以获取最佳实践。

默认提示词配置

在这里插入图片描述

您是一位在 VSCode 中的专家 AI 编程助手,主要专注于生成清晰、可读的代码。
您考虑周到,提供细致的答案,并在推理方面表现出色。您仔细提供准确、事实性、深思熟虑的答案,并在推理方面表现出色。

请仔细遵循用户的要求。
首先逐步思考——详细描述您要构建的内容的伪代码。
确认后再写代码!
始终编写正确、最新、无错误、功能完整、工作正常、安全、高效的代码。
关注可读性,而不是性能。
全面实现所有请求的功能。
不留任何待办事项、占位符或缺失部分。
确保代码完整!彻底验证最终结果。
包括所有必要的导入,并确保关键组件的命名正确。
简明扼要,尽量减少其他文字。
如果您认为可能没有正确答案,请明确指出。如果您不知道答案,请直接说出,而不是猜测。

三种会话模式

在这里插入图片描述

开启特性

在这里插入图片描述

第三步:AI Agents 自动编码测试

写一个 unsplash 图片墙,提示词

在 lib/pages/msg/msg_index/view.dart 界面中实现,unsplash.com 图片墙功能

分别在控制器和视图中加入了代码,后期还需要进一步的优化。

产出效果

在这里插入图片描述

小结

通义千问2.5-Max与Roo Code Cline插件的结合,为AI自动编程领域带来了全新的解决方案。通过基准测试,这一组合在性能上成功超越了DeepSeek v3,展现了强大的代码生成能力和智能化水平。无论是开发者还是企业用户,都可以借助这一技术提升开发效率,降低人工成本。未来,随着AI编程工具的不断进化,通义千问2.5-Max有望成为行业标杆,推动AI编程技术迈向新高度。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### 配置 VSCode 中的 Roo Code 插件 #### 安装扩展 为了在 Visual Studio Code (VSCode) 中使用 Roo Code 插件,需先通过 Extensions 标签页来查找并安装该插件[^1]。 #### 进入设置界面 完成安装之后,点击左侧活动栏中的齿轮图标(即“管理”),然后选择“设置”,或者直接按下快捷键 `Ctrl+,` 来快速访全局或工作区特定的设置选项。不过对于本操作而言,在扩展详情页面内找到“Settings”入口更为便捷。 #### 配置 API Provider 和 Base URL - **API Provider**: 在设置菜单中定位到 API Provider 字段,并从中选取 "LM Studio" 作为服务提供者。 - **Base URL**: 此处应填写由 LM Studio 或其他指定平台所提供的URL地址。如果打算利用 DeepSeek-R1 模型,则需要向供应商请求具体的 Base URL 地址,这通常是 HTTP(s) 形式的网络路径。 #### 设置 Model ID 当环境中仅存在单一模型时,Model ID 将被自动填充;而在多模型场景下,则需要依据实际情况手动输入所使用的 DeepSeek 模型对应的唯一标识符(ID)。 #### 应用更改 最后一步是确认所有配置无误后,单击 “Done” 按钮以保存所做的修改。 ```python # 示例 Python 脚本用于展示如何连接至远程服务器获取 Base URL(假设) import requests def get_base_url(api_key, model_name='DeepSeek-R1'): url = f"https://example.com/api/v1/models/{model_name}/base-url" headers = {'Authorization': f'Bearer {api_key}'} response = requests.get(url, headers=headers) if response.status_code == 200: return response.json().get('baseUrl') else: raise Exception(f"Failed to fetch base URL: {response.text}") # 使用函数获取 Base URL 并打印出来 try: api_key = 'your_api_key_here' print(get_base_url(api_key)) except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值