LlamaIndex+Ollama构建《劳动法》问答机器人

部署运行你感兴趣的模型镜像

在这里插入图片描述

LlamaIndex+Ollama构建《劳动法》问答机器人

本文将一步一步引导大家如何使用LlamaIndex和Ollama构建一个针对《劳动法》的问答机器人。这个机器人能够理解并回答关于这本劳动法的各种问题。

Ollama安装

Ollama简介

Ollama 是一个强大的开源工具,用于在本地计算机上运行、管理和部署大型语言模型(LLMs)。它简化了下载和运行各种开源语言模型的过程,使开发者能够轻松地在本地环境中利用这些先进的AI技术。

核心特点
  1. 本地运行:所有模型都在你的设备上运行,无需依赖云服务,保护隐私和数据安全
  2. 跨平台支持:支持 macOS、Linux 和 Windows
  3. 模型管理:轻松下载、更新和管理不同版本的模型
  4. 简单易用:通过命令行界面提供直观的操作方式
  5. 丰富的模型库:支持 Llama、Qwen、Gemma、Phi等多种开源模型
  6. REST API:提供API接口,方便与其他应用集成
基础安装

Windows下载安装包安装即可,LinuxmacOS执行下面的脚本安装。

sh体验AI代码助手代码解读复制代码curl -fsSL https://ollama.com/install.sh | sh

安装完成后,执行下面命令,显示Ollama is running则表示安装成功。

sh体验AI代码助手代码解读复制代码curl localhost:11434
模型下载
sh体验AI代码助手代码解读复制代码# 下载问答模型
ollama pull qwen2.5:0.5b

# 下载Embedding模型
ollama pull bge-m3

Jupyter安装

sh体验AI代码助手代码解读复制代码# 安装jupyter
pip install jupyter
# 创建工作目录
mkdir workdata/jupyter -p && cd workdata/jupyter
# 运行jupyter
jupyter-lab .

知识库构建

下载文档

下载文档并将txt或者pdf文件移至工作目录下的/data目录。

sh体验AI代码助手代码解读复制代码mkdir workdata/jupyter/data && mv 劳动法.pdf workdata/jupyter/data
安装依赖库
ipynb体验AI代码助手代码解读复制代码!pip install llama-index ollama chromadb
!pip install llama-index-vector-stores-chroma llama-index-embeddings-ollama
加载文档

使用LlamaIndex核心库的SimpleDirectoryReader阅读器加载文档。

python体验AI代码助手代码解读复制代码from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader('./data/').load_data()
documents

在这里插入图片描述

切分文档

使用LlamaIndex核心库节点解析模块的SentenceSplitter(按照句子切分)拆分模块来拆分文档。

python体验AI代码助手代码解读复制代码from llama_index.core.node_parser import SentenceSplitter

parser = SentenceSplitter(
    chunk_size=512,
    chunk_overlap=20
)

nodes = parser.get_nodes_from_documents(documents)
nodes

在这里插入图片描述

  • chunk_size: 分块大小,每个文本块的最大长度。
  • chunk_overlap: 分块重叠,相邻文本块的重叠部分大小,一般为10%-20%。
存储文档
python体验AI代码助手代码解读复制代码# 导入chroma向量库
import chromadb
# 导入OllamaEmbedding模块
from llama_index.embeddings.ollama import OllamaEmbedding
# 导入存储上下文&向量索引模块
from llama_index.core import StorageContext, VectorStoreIndex
# 导入Chroma的向量存储模块
from llama_index.vector_stores.chroma import ChromaVectorStore

# 向量库连接
chroma_client = chromadb.PersistentClient('./data/ldf_chroma_db')

# 创建集合(collection)
collection = chroma_client.create_collection('ldf')

# 实例化向量模型
embed_model = OllamaEmbedding(
    model_name='bge-m3'
)

# 实例化向量存储
vector_store = ChromaVectorStore(chroma_collection=collection)

# 实例化存储上下文
storage_context = StorageContext.from_defaults(vector_store=vector_store)

# 索引文档并存入向量库
index = VectorStoreIndex(
    nodes=nodes,
    storage_context=storage_context,
    embed_model=embed_model,
    show_progress=True
)

在这里插入图片描述

等待索引完成,到这里,我们已经完成的《劳动法》向量库的构建工作。

机器人构建

python体验AI代码助手代码解读复制代码import ollama
from typing import List

def retrieve_documents(query: str, top_k: int = 3) -> List[str]:
    """检索相关文档"""
    results = collection.query(
        query_embeddings=embed_model.get_query_embedding(query),
        n_results=top_k
    )
    return results['documents'][0]

def generate_answer(context: List[str], question: str) -> str:
    """生成回答"""
    context_str = "\n".join([f"[{i+1}] {doc}" for i, doc in enumerate(context)])
    
    prompt = f"""
    【系统指令】
    你是一个法律专家,请根据以下资料回答问题。
    
    【参考资料】
    {context_str}
    
    【用户问题】
    {question}
    
    【回答要求】
    1. 答案必须来自参考资料
    2. 保持客观准确
    3. 使用中文回答
    4. 不确定时回答"资料未提及"
    """
    
    response = ollama.generate(
        model="qwen2.5:0.5b",
        prompt=prompt,
        options={"temperature": 0.3}
    )
    return response['response']
    
def ask_rag(question: str) -> str:
    """基于知识库的RAG回答"""
    relevant_docs = retrieve_documents(question)
    print(relevant_docs)
    print('='*100)
    answer = generate_answer(relevant_docs, question)
    return answer

测试效果

在这里插入图片描述

在这里插入图片描述

…剩下的大家可以自己试试😁😁😁

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

<think>好的,用户问的是LangChain、LlamaIndexollama的区别,需要我用中文解释清楚。首先我得确定这三个工具各自的定位和功能,不能混淆。 首先,ollama,我记得是一个本地运行大模型的工具,支持Llama、Mistral等模型。用户下载后可以直接在命令行运行,方便本地测试和开发。可能用户会用它来快速部署模型,不需要复杂的环境配置。 然后是LangChain,这个我之前学过,是一个用于构建大语言模型应用的框架。它主要处理链式调用,比如把多个步骤连起来,比如调用模型、处理输出、连接数据库等。LangChain的模块化设计让开发者可以灵活组合不同组件,比如记忆模块、数据检索模块,适合做复杂的应用,比如客服机器人或者数据分析工具。 接下来是LlamaIndex,以前叫GPT Index,专注于数据索引和检索。它的核心功能是将外部数据转换成向量索引,方便大模型快速查询。比如用户有自己的文档或数据库,LlamaIndex能高效地建立索引,让模型在回答时引用这些数据。这在需要结合私有数据的场景下特别有用,比如企业内部的知识库系统。 现在需要区分它们的区别。首先,ollama是运行模型的工具,而另外两个是应用开发框架。LangChain更全面,适合构建多步骤的复杂应用,而LlamaIndex专精于数据检索,优化了RAG(检索增强生成)流程。可能用户在选择时需要根据需求:如果只需要快速跑模型,用ollama;要开发复杂应用,用LangChain;需要高效检索私有数据,选LlamaIndex。此外,这三者可以结合使用,比如用ollama运行模型,LangChain处理流程,LlamaIndex管理数据,这样组合起来更强大。 要确保回答结构清晰,分点说明每个工具,再对比区别。注意用词准确,比如ollama是工具,LangChain是框架,LlamaIndex是专注数据索引的库。还要检查LaTeX是否符合要求,但这里可能用不上,不过数学表达式的部分需要留意。用户可能需要知道如何选择这些工具,所以最后给出使用场景的建议会更好。</think>以下是 **LangChain**、**LlamaIndex** 和 **Ollama** 的区别和定位解析: --- ### 1. **Ollama** - **定位**:轻量级工具,专注于在本地快速运行和部署大语言模型(如 Llama、Mistral 等)。 - **核心功能**: - 提供命令行工具,一键下载和运行开源大模型(如 `llama2`, `mistral`, `codellama` 等)。 - 支持模型本地化运行,无需复杂配置,适合开发测试或小规模场景。 - 提供简单的 API,方便与其他工具集成。 - **典型场景**:快速测试开源模型、本地部署轻量级 AI 应用。 --- ### 2. **LangChain** - **定位**:通用框架,用于构建基于大语言模型的复杂应用流程(如 Agents、RAG、自动化任务)。 - **核心功能**: - 模块化设计:提供链(Chains)、工具(Tools)、记忆(Memory)、检索(Retrieval)等组件。 - 支持多模型调用(如 OpenAI、Anthropic、本地模型等)。 - 专注于构建端到端流程,例如结合数据库、API 和模型实现自动化任务。 - **典型场景**:开发智能客服、数据分析工具、多步骤决策系统。 --- ### 3. **LlamaIndex** - **定位**:专用工具,优化数据索引与检索(RAG 场景)。 - **核心功能**: - 将外部数据(文档、数据库、API)转换为高效索引(如向量索引、树状索引)。 - 为模型提供结构化数据查询能力,提升回答的准确性和相关性。 - 深度集成 LangChain,但更专注于数据检索环节。 - **典型场景**:构建企业知识库、私有数据问答系统、文档摘要生成。 --- ### 三者的区别总结 | 维度 | Ollama | LangChain | LlamaIndex | |---------------|-----------------------|-------------------------------|-------------------------| | **核心目标** | 运行本地大模型 | 构建复杂应用流程 | 优化数据检索与索引 | | **功能重点** | 模型部署与调用 | 流程编排、多工具集成 | 数据连接、高效查询 | | **使用场景** | 本地测试、轻量级应用 | 多步骤任务、自动化系统 | 私有数据问答RAG 增强 | | **依赖关系** | 独立运行 | 可集成 Ollama/LlamaIndex | 常与 LangChain 配合使用 | --- ### 协作关系举例 1. 用 **Ollama** 在本地运行 `llama2` 模型。 2. 用 **LlamaIndex** 将企业文档转换为向量索引。 3. 用 **LangChain** 编排流程:接收用户问题 → 检索 LlamaIndex 数据 → 调用 Ollama 模型生成回答。 --- 根据需求选择工具: - 仅需运行模型 → **Ollama**。 - 需复杂流程开发 → **LangChain**。 - 需高效检索私有数据 → **LlamaIndex**。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值