如何使用 DeepSeek-R1、LangChain 和 Ollama 构建隐私优先的 RAG

在本指南中,您将学习如何构建一个 检索增强生成 (RAG) 系统,该系统使用 DeepSeek-R1LangChainOllamaStreamlit 在本地处理 PDF 文件。这个逐步教程结合了 LangChain 的模块化能力和 DeepSeek-R1 的隐私优先方法,提供了一个强大的解决方案,用于处理技术、法律和学术文档。

在这里插入图片描述

该项目将 LangChain(一个用于 RAG 工作流的 AI 框架)与 Ollama(用于 DeepSeek-r1 本地部署)和 Streamlit(用于用户界面)结合在一起。最终结果是一个能够 本地摄取 PDF快速准确回答问题 的 AI 助手。

在本演示中,我们将使用一个 7B 参数的 DeepSeek-r1 精简模型,但如果您拥有更强大的计算能力,我建议使用其他 DeepSeek-r1 精简模型。

图片

为什么选择私人RAG解决方案?

基于云的AI解决方案功能强大,但通常面临诸如隐私风险重复成本等挑战。通过利用LangChain的模块化框架,您可以创建一个具有众多优势的本地RAG解决方案

  • 数据隐私:所有操作都在本地进行,您的数据永远不会离开您的机器。
  • 成本效率:无需昂贵的API订阅,此解决方案是免费的和开源的。
  • 可定制性:LangChain的灵活性使您能够微调文档检索和响应生成管道。
  • 强大的AI:与DeepSeek-R1集成,这是一个优化用于解决问题和技术任务的推理模型。

工具和技术:LangChain、DeepSeek-R1、Ollama、ChromaDB 和 Streamlit

该项目由以下部分组成:

  • LangChain:RAG 流水线的核心框架,支持文档加载器、向量存储和 LLM 的集成。它允许根据您的特定需求定制模块化和可扩展的 AI 工作流程。
  • DeepSeek-R1:一种用于编码、解决问题和技术任务的推理 LLM。提供多种精简版本以便与 Ollama 进行本地部署。
  • Ollama:一个命令行工具,简化本地 LLM 和嵌入模型(如 DeepSeek-R1 和 mxbai-embed-large)的部署和管理。
  • ChromaDB:一个向量数据库,用于存储和检索文档嵌入,以便进行基于相似性的查询。
  • Streamlit:一个用于构建网页界面的 Python 库,使您的 RAG 应用程序用户友好且易于访问。

在这里插入图片描述

构建 RAG 流水线:逐步指南

以下是如何设置本地 ChatPDF 解决方案的步骤:

1. 安装先决条件

确保您已安装 Python 3.8+ 和 Ollama。运行以下命令:

curl -fsSL https://ollama.com/install.sh | sh
ollama -v  # 验证安装

下载所需的 AI 模型:

ollama pull deepseek-r1:latest # 默认 7B 模型
ollama pull mxbai-embed-large  # 嵌入模型

图片

2. 设置项目

克隆仓库并设置虚拟环境:

git clone https://github.com/paquino11/chatpdf-rag-deepseek-r1.git
cd chatpdf-rag-deepseek-r1
python3 -m venv venv
source venv/bin/activate

安装依赖:

pip install -r requirements.txt
3. 运行应用程序

启动 Streamlit 应用程序:

streamlit run app.py

在浏览器中访问应用程序,地址为 http://localhost:8501。上传您的 PDF 文件,调整检索设置并开始提问。

图片

使用 DeepSeek-R1、Ollama、LangChain 和 ChromaDB 构建 RAG 管道

该项目使用 LangChain 管理整个 RAG 工作流:

  1. \1. 使用 LangChain 进行 PDF 导入
  • • 使用 LangChain 的 PyPDFLoaderRecursiveCharacterTextSplitter 读取并拆分 PDF 文件。
  • • 将块嵌入为向量表示,使用 OllamaEmbeddings

2. 使用 ChromaDB 进行文档检索

  • • LangChain 与 ChromaDB 的集成实现了快速的基于相似度的相关文档块检索。
  • • 自定义结果数量 (k) 和相似度阈值 (score_threshold),以更好地控制。

3. 使用 DeepSeek-R1 生成响应

  • • 检索到的文档块被传递给 DeepSeek-R1,生成简洁且准确的答案。
  • • LangChain 的 ChatPromptTemplate 确保 AI 以用户友好的格式进行响应。

自定义检索设置以获得最佳结果

LangChain 使调整检索设置以获得最佳性能变得简单:

k: 检索结果数量控制响应中使用的文档块数量。

  • • 更高的 k: 更多上下文,响应较慢。
  • • 更低的 k: 更少上下文,响应较快。

score_threshold: 相似度阈值根据相关性过滤检索结果。

  • • 更高的阈值: 仅检索高度相关的块。
  • • 更低的阈值: 更广泛的上下文但不够精确。

图片

使用案例和测试您的 RAG 应用程序

以下是一些测试应用程序的示例:

测试PDF:
  • 金融:分析财务报告并提取可行的见解。
  • 医疗:总结研究论文或医疗指南。
  • 教育:从电子书和学术论文中提取摘要或关键点。
示例问题:
  • • “这个 Python 库的关键特性是什么?”
  • • “本合同的第 5 节讨论了什么?”
  • • “总结一下这本电子书的第二章。”

结论

通过结合 LangChainDeepSeek-R1ChromaDB,您可以创建一个优先考虑隐私、灵活性和成本效率的 RAG 系统。这个本地 RAG 解决方案非常适合分析技术文档、法律文本等,而无需依赖基于云的工具。

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值