前言
前面我们学会了如何构建RagFlow
镜像来部署服务以及如何一步一步的搭建自己的共享知识库。那我们怎么利用自己的知识库来创建一个Agent
(代理智能体)来为我们的业务和工作服务了?这两天体验了一下Manus
说实话,我已经麻木了,给我的感觉Manus
的整个流程看起来似乎就是一个比较完整,整合多场景的超级Agent
,事实上并没有想象中那般惊艳绝伦。目前官方并没有公布技术细节,但至少有一点可以肯定Manus
的核心支撑依然依靠的是大模型。
1 什么是Agent?
Agent
(智能体) 是一个广泛使用的概念,并应用于各行各业,通常指能够感知环境并自主行动以实现目标的实体。它在不同领域有不同的具体含义,但核心思想是自主性
和目标导向性
。
1.1 计算机科学与人工智能中的Agent
在AI领域,Agent
通常指软件或硬件实体,具备以下特征:
感知(Perception)
:通过传感器、数据输入等方式获取环境信息(如摄像头、用户输入、网络数据)。决策(Decision-making)
:基于感知信息和内部逻辑(如规则、模型、算法)做出判断。行动(Action)
:通过执行器或输出模块对环境产生影响(如控制机器人移动、发送消息、调整策略)。目标导向(Goal-oriented)
:为实现特定目标而行动(如自动驾驶汽车安全到达目的地)。
1.2 Agent 在 RAG 中的应用
在 Retrieval-Augmented Generation (RAG)
系统中,Agent
扮演着增强推理和决策能力的角色,具体应用场景包括:
任务分解
:将复杂问题拆解为多个子任务(如信息检索、逻辑推理、答案合成)。多轮对话管理
:维护对话上下文,确保多轮交互中的连贯性。动态检索策略
:根据用户意图调整检索范围和优先级。记忆管理
:存储和复用历史对话与检索结果,优化长期性能。
1.3 典型 Agent 框架与工具
LangChain
:通过链式调用(Chain)连接不同模块(如 LLM、数据库),支持自定义工作流。Llama Index
:专注于构建知识库,提供文档解析、索引和检索增强的 Agent 功能。RAGFlow
:集成 Agent 模块实现闭环控制,如自动重写查询或触发外部工具。
1.4 示例:Agentic RAG 工作流程
-
用户提问:“推荐武汉适合家庭聚餐的餐厅,预算人均 150 元。”
-
Agent 处理:
-
- 分解任务:筛选符合预算的餐厅 → 验证家庭友好设施 → 排序推荐。
- 动态检索:优先检索近期评分高、有儿童设施的餐厅。
- 合成答案:结合知识库和实时数据生成推荐列表。
-
结果输出:返回包含地址、特色菜和用户评价的推荐结果。
这是一个比较典型的使用Agent的案例。
1.5 Agent 对 RAG 的价值
提升复杂问题处理能力
:通过多步推理和工具调用,解决单靠检索无法回答的问题。增强灵活性
:根据上下文动态调整策略,适应多样化的用户需求。降低幻觉风险
:通过检索事实性数据,为 LLM 生成提供可靠依据。
总之Agent
就是 RAG
系统的 “智能调度器”
,通过任务分解、动态决策和多模块协作,将检索、生成和推理深度整合,推动 AI
从 “信息检索”
迈向 “问题解决”
。
2 RagFlow的Agent能力
2.1 创建Agent
点击创建
Agent
会弹出这样一个模板页面,RagFlow
帮我们内置了一些常见场景的Agent
模板。为了让大家看的更明白,我把模板的介绍都转成中文了,原本是英语的。
我们不用内置好的,模板先使用空白模板创建一个Agent
,看一下工作区域是个什么样的。
Agent创建之后,就是一个画布工作空间,左边是组件右边是Agent设计区域。这东西对于我来说还挺熟悉的,看起来就跟平时做工作流引擎画流程图那个画布差不多。
下图是流程图设计器,是不是很熟悉的感觉,哈哈😂
2.2 认识Agent基础组件
2.2.1 开始组件
相当于工作流中的启动事件差不多,可以通过下图的顺序添加扩展的参数,参数类型主要是单文本、多文本、下拉选、文件、布尔、整数等类型。
新增一个文件类型的参数
Optional
开关是控制你添加的参数是否为必须参数,如果是非必须参数就打开这个开关为蓝色状态。
2.2.2 知识检索组件
这个组件主要注意一下,知识库参数,创建这个组件需要提前创建好知识库,剩下的参数配置直接鼠标移动到 “❓” 就能看到详细介绍。
2.2.3 生成回答组件
System prompt
一般配合其它组件一起使用,比如和知识检索组件一起使用。
2.2.4 对话组件
2.2.5 问题分类组件
这个问题分类组件可就有意思了,我们怎么理解这个东西了?它似乎是类似于条件选择分组归类,但是它是利用大模型根据你设置的描述和示例进行推断然后再根据推断信息选择流程。
这个地方设置的分类一定描述清楚
2.2.6 静态消息
这个组件就是提前内置一些消息,等到了某种预定的场景就随机发送一条消息。
2.2.7 问题优化组件
这里的
“精确”
意味着大语言模型会保守并谨慎地回答你的问题。 “即兴发挥”
意味着你希望大语言模型能够自由地畅所欲言。 “平衡”
是谨慎与自由之间的平衡。
2.2.8 关键词组件
这个组件也可以添加自定义输入参数。
2.2.9 条件组件
通过条件控制对各种条件进行更加细粒度控制,从而实现复杂的分支逻辑。这里的分支逻辑越复杂,所消耗的tokens
越大。
2.2.9 集线器组件
这个东西有点类似于流程引擎中的网管组件,在RagFlow
中如果需要实现并行操作,就需要集线器组件的支持。
2.2.10 模板转换组件
这个一般是做一些排版需求可能会用的上,比如输出固定格式的文件内容。必须输出发票信息等。
2.2.11 循环组件
该组件首先将输入以“分隔符”
分割成数组,然后依次对数组中的元素执行相同的操作步骤,直到输出所有结果,可以理解为一个任务批处理器。 例如在长文本翻译迭代节点中,如果所有内容都输入到大模型节点,可能会达到单次对话的限制,上游节点可以先将长文本分割成多个片段,配合迭代节点对每个片段进行批量翻译,避免达到单次对话的大模型消息限制。
2.2.12 注释组件
这个组件就类似于代码中的注释差不多的,描述组件当前是干啥的。当Agent
十分复杂的时候,给每一个组件添加上注释,便于后期维护。
2.3 设计一个 Agent
流程
利用之前做的法律知识库,实现一个AI法律助手。点击运行然后思考的有点慢。但是整体效果还是可以的。
2.4 怎么使用Agent?
2.4.1 创建 API KEY
按照下图所示的步骤创建API KEY
2.4.2 嵌入网站
目前官方只实现了全屏嵌入,部分嵌入和插件都没有实现。
复制接口地址直接就可以再浏览器上面使用。还是相当的方便的,可以根据公司的不同的业务创建不同的Agent
。
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。