谁是深度学习框架一哥?2022年,PyTorch和TensorFlow再争霸

2022年的深度学习框架竞争中,PyTorch以其简单易用深受科研人员喜爱,而TensorFlow在工业界保持领先地位。尽管TensorFlow在模型部署和生态系统上有优势,但PyTorch在研究领域的普及率和模型可用性正逐渐增长。这场甜咸之争仍无定论,选择取决于具体需求。
摘要由CSDN通过智能技术生成

你用PyTorch还是用TensorFlow?

对于不同人群可能有不同的答案,科研人员可能更偏爱PyTorch,因其简单易用,能够快速验证idea来抢占先机发论文。

虽然TensorFlow的差评如海,甚至有用户专门注册一个GitHub账号开个issue来骂TensorFlow,但TensorFlow在工业界大哥的地位PyTorch仍然无法撼动。

所以,进入2022年,你决定用PyTorch还是TensorFlow?

旷日持久的甜咸之争

早在2015年11月9日,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)就开放了源代码,其前身是谷歌的神经网络算法库DistBelief。TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现。

到了2017年1月,由Facebook人工智能研究院(FAIR,现在是MAIR)基于Torch推出了PyTorch,主要提供两个高级功能:

  1. 具有强大的GPU加速的张量计算(如NumPy)
  2. 包含自动求导系统的深度神经网络

最近Reddit上关于TensorFlow和PyTorch的讨论又引起了网友的关注。

题主表示,两个框架和他们对应的两种生态系统发展的都是如此迅速,每个阵营都有自己的狂热支持者,也许是时候分析一下他们到底有什么不同了。

目前来说,PyTorch仍然是「研究型」框架,TensorFlow仍然是「工业型」框架,他们之间的争论主要可以归结为三个因素:模型可用性、模型部署、软件生态

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值