想去看演唱却总是抢不到票?教你用Python制作一个自动抢票脚本

本文介绍了如何使用Python的selenium库制作一个自动抢票脚本,通过面向对象编程、保存和读取Cookie实现免登陆,以及进行抢票和下单的操作。详细步骤包括登录设置、免登陆实现和抢票下单流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

嗨喽!大家好,这里是魔王!!

大麦网,是中国综合类现场娱乐票务营销平台,业务覆盖演唱会、 话剧、音乐剧、体育赛事等领域。

但是因为票数有限,还有黄牛们不能丢了饭碗,所以导致了,很多人都抢不到票

那么,今天带大家用Python来制作一个自动抢票的脚本小程序
请添加图片描述

此次知识点:

  • 面向对象编程
  • selenium 操作浏览器
  • pickle 保存和读取Cookie实现免登陆
  • time 做延时操作
  • os 创建文件,判断文件是否存在

开发环境:

  • 版 本:anaconda5.2.0(python3.6.5)
  • 编辑器:pycharm

python安装包 安装教程视频

pycharm 社区版 专业版 及 激活码

视频教程私我领取

第三方库:

  • selenium >>> pip install selenium==3.4.1

步骤

  1. 实现免登陆
    第一次登陆的时候 会帮助我记录我们的登陆信息
    set_cookie 登陆成功之后 cookie会发生变化
    后续抢票: 直接使用我们记录好的登陆信息
    get_cookie

  2. 抢票并且下单

请添加图片描述

首先导入本次所需的模块

from selenium import webdriver  # 操作谷歌浏览器 需要额外安装的 并且现在安装这个模块得指定版本 3.4
from time import sleep
import pickle  # 保存和读取cookie实现免登录的工具
import os   # 操作文件的模块

第一步,实现免登录

确定目标,设置全局变量

# 大麦网主页
damai_url = "https://www.damai.cn/"
# 登录页
login_url = "https://passport.damai.cn/login?ru=https%3A%2F%2Fwww.damai.cn%2F"
# 抢票目标页
target_url = 'https://detail.damai.cn/item.htm?spm=a2oeg.search_category.0.0.77f24d15RWgT4o&id=654534889506&clicktitle=%E5%A4%A7%E4%BC%97%E7

初始化加载

class Concert:
    def __init__(self):
        self.status = 0         # 状态,表示如今进行到何种程度
        self.login_method = 1   # {0:模拟登录,1:Cookie登录}自行选择登录方式
        self.driver = webdriver.Chrome(executable_path='chromedriver.exe')        # 默认Chrome浏览器

登录调用设置cookie

def set_cookie(self):
    self.driver.get(damai_url)
    print("###请点击登录###")
    while self.driver.title.find('大麦网-全球演出赛事官方购票平台') != -1:
        sleep(1)
    print('###请扫码登录###')

    while self
### YOLOv8 模型蒸馏方法及实现 #### 教师模型与学生模型的选择 在YOLOv8模型蒸馏过程中,教师模型通常是使用大量数据集训练得到的高性能YOLOv8模型,而学生模型则是在较小的数据集上训练的小规模YOLOv8模型。通过知识蒸馏技术,学生模型能够继承教师模型的知识和经验,进而提高其性能[^1]。 #### 蒸馏损失函数的设计 为了使学生模型更好地模仿教师模型的行为,设计合理的蒸馏损失函数至关重要。通常情况下,除了传统的分类交叉熵损失外,还会引入额外的蒸馏损失项来衡量两个模型输出之间的差异。对于YOLOv8而言,这可能涉及到logits层面以及中间特征图层面的距离度量[^3]。 ```python import torch.nn.functional as F def distillation_loss(student_output, teacher_output, temperature=2.0): """Compute the knowledge-distillation (KD) loss given outputs.""" KD_loss = F.kl_div( F.log_softmax(student_output / temperature, dim=1), F.softmax(teacher_output / temperature, dim=1), reduction='batchmean' ) * (temperature ** 2) return KD_loss ``` #### 实现细节说明 具体来说,在`train`方法中增加了一个新的参数`model_t`用于接收预训练好的教师网络实例;当该参数被提供时即开启蒸馏模式,并需特别设置`model_t.model.model[-1].set_Distillation(True)`以激活相应机制。此外,还可以考虑对不同层次上的特征映射应用相似的操作,以便更全面地传递信息给学生模型[^4]。
评论 514
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值