12、医疗数据库中的错误查找与预防

医疗数据库中的错误查找与预防

1. 引言

损坏的数据或缺失的值会对分析流程产生严重的负面影响。即使是理想的机器学习方法,也无法基于失真的信息找到可接受的解决方案。在过去二十年中,人们进行了大量研究来开发算法和数据清理工具。然而,由于数据的异质性、简单的拼写错误、格式错误、旧数据集成等问题,错误检测是一项非常困难的任务。数据质量和数据清理策略的有效性高度依赖于具体情境、领域、应用和用户。在医学领域,这表现为数据录入时的分析工作需求以及各种数据类型所导致的特定错误。数据录入错误会因初始医疗文档中的错误而加剧。

2. 从初始医疗文档向研究数据库转移信息时的数据录入错误
2.1 分析的数据库

我们分析了几个研究数据库的数据,这些数据库包含了在一家学术医疗中心接受放射治疗的肿瘤患者的治疗和预后信息。数据库使用了 MS Access 客户端和 PostgreSQL 数据库服务器,通过标准的 MS Access 表单图形用户界面进行数据录入。经过培训的技术人员通常从电子或纸质医疗记录中手动复制数据录入到这些数据库中。为了尽量减少数据录入错误,使用了特定参数范围的约束和基于其他字段值的动态约束,但未对录入特定记录的人员进行跟踪。典型记录包含患者的人口统计信息、病情诊断日期(定义为活检日期)、门诊放疗首次和末次就诊日期、最后随访日期(放疗疗程结束后)以及当前随访状态(缓解、复发、因治疗的癌症死亡、因其他原因死亡)。我们采用了两种策略来识别错误录入:极不可能/内部不一致的数据以及不同数据库中重复数据录入之间的差异(外部不一致的数据)。

2.2 不可能/内部不一致的数据

为了评估研究数据库中的不可能录入和内部不一致情况,我们分析了

【顶刊TAC复现】事件触发模型参考自适应控制(ETC+MRAC):针对非线性参数不确定性线性部分时变连续系统研究(Matlab代码实现)内容概要:本文档介绍了“事件触发模型参考自适应控制(ETC+MRAC)”的研究Matlab代码实现,聚焦于存在非线性参数不确定性且具有时变线性部分的连续系统。该研究复现了顶刊IEEE Transactions on Automatic Control(TAC)的相关成果,重点在于通过事件触发机制减少控制器更新频率,提升系统资源利用效率,同时结合模型参考自适应控制策略增强系统对参数不确定性和外部扰动的鲁棒性。文档还展示了大量相关科研方向的技术服务内容,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个领域,并提供了Matlab仿真辅导服务及相关资源下载链接。; 适合人群:具备自动控制理论基础、非线性系统分析背景以及Matlab编程能力的研究生、博士生及科研人员,尤其适合从事控制理论工程应用研究的专业人士。; 使用场景及目标:① 复现顶刊TAC关于ETC+MRAC的先进控制方法,用于非线性时变系统的稳定性性能优化研究;② 学习事件触发机制在节约通信计算资源方面的优势;③ 掌握模型参考自适应控制的设计思路及其在不确定系统中的应用;④ 借助提供的丰富案例代码资源开展科研项目、论文撰写或算法验证。; 阅读建议:建议读者结合控制理论基础知识,重点理解事件触发条件的设计原理自适应律的构建过程,运行并调试所提供的Matlab代码以加深对算法实现细节的理解,同时可参考文中列举的其他研究方向拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值