一 数据包络模型介绍
1.1 背景介绍
小明是中国银行长沙分行的管理人员,每到年底时,小明需要评估长沙分行下辖所有支行在这一年的营运效率。营运效率在这里定义为:在给定一定量的资源投入下,该分行将投入的资源转化为我们想要的产出的能力。
小明需要做的第一件事是选取投入指标和产出指标。假设他选取各个支行的员工数作为投入指标:该支行本年度新增存款作为产出指标,评估各个支行的效率是显而易见的:按照本年度新增存款/员工数从高到低排序即可。即平均每位员工拉来的存款越多,该支行的营运效率越高,这被称为单投入单产出下的效率评估。
然而,真实情况显然没有这么简单。在真实的银行管理运营中,我们需要考虑除了员工数之外的其他诸多投入指标,如营业支出、固定资产净值等;此外,我们也需要考虑除了本年度新增存款之外的其他诸多产出指标,如资本收益等,这被称为多投入多产出下的效率评估。
对于单投入-单产出的模型,可以通过投入产出比、生产函数等方法进行效率评估;对于多投入-单产出的模型,有多元线性回归、逻辑回归等方法进行评估;那么对于多投入-多产出模型,我们应该采用什么方法对其进行效率评估呢?
1.2 DEA方法的思想
DEA是对其决策单元(DMU)的投入规模、技术有效性作出评价,即对各同类型的企业投入一定数量的资金、劳动力等资源后,其产出的效益(经济效益和社会效益)做一个相对有效性的评价。
DEA方法是一种以相对效率概念为基础,以凸分析和线性规划为工具的评价方法,应用数学规划模型计算比较决策单元之间的相对效率,对评价对象作出评价。它能充分考虑对于决策单元本身最优的投入产出方案,因而能够更理想地反映评价对象自身的信息和特点。
二 CCR模型介绍
2.1 线性分式模型
m a x h 0 ( u , w ) = ∑ r = 1 s u r y r 0 ∑ i = 1 m w i x i 0 max\;h_{0}(u,w)=\frac{\sum_{r=1}^s u_{r}y_{r0}}{\sum_{i=1}^m w_{i}x_{i0}} maxh0(u,w)=∑i=1mwixi0∑r=1suryr0
S u b j e c t t o Subject\;to Subjectto
- ∑ r = 1 s u r y r j ∑ i = 1 m w i x i j ≤ 1 , j = 1 , . . . , n \frac{\sum_{r=1}^s u_{r}y_{rj}}{\sum_{i=1}^m w_{i}x_{ij}}\leq1,j=1,...,n ∑i=1mwixij∑r=1suryrj≤1,j=1,...,n
- w i , u r ≥ 0 f o r a l l i a n d r \\w_{i},u_{r}\geq0\;for\;all\;i\;and\;r wi,ur≥0foralliandr
根据DEA方法的基本思想,构建以最大化函数为加权产出投入比的线性分式模型,控制每个DMU加权产出投入比小于等于1,寻找其中某一个DMU所能达到的最大加权产出投入比,若某一DMU的最大化函数能够等于1,则说明该DMU是有效的(efficient),反之,若最大化函数小于1,则说明该DMU是无效的(inefficient),也就是说明在相同投入的情况下,存在其他DMU产出大于该DMU。
2.2 线性规划模型
通过Cooper转换,将上述线性分式模型转换为线性规划模型。该模型又称为乘数模型。
m a x z = ∑ r = 1 s u r y r o max\;z=\sum_{r=1}^s u_{r}y_{ro} maxz=∑r=1suryro
S u b j